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Preface

This Instructor’s Solution Manual provides solutions fbe tend-of-chapter exer-
cises inSpeech and Language Processing: An Introduction to Natuaabuage Pro-
cessing, Computational Linguistics, and Speech Recogn{tecond Edition) For
the more interactive exercises, or where a complete solwauld be infeasible (e.qg.,
would require too much code), a sketch of the solution orudison of the issues
involved is provided instead. In general, the solutionshis tmanual aim to provide
enough information about each problem to allow an instiuctoneaningfully evaluate
student responses.

Note that many of the exercises in this book could be solvadimmber of different
ways, though we often provide only a single answer. We havedifor what we
believe to be the most typical answer, but instructors shda open to alternative
solutions for most of the more complex exercises. The gdal et students thinking
about the issues involved in the various speech and languragessing tasks, so most
solutions that demonstrate such an understanding havevachihe main purpose of
their exercises.

On a more technical note, throughout this manual, when cegeadvided as the
solution to an exercise, the code is written in the Pythoigmmming language. This
is done both for consistency, and ease of comprehension anymases, the Python
code reads much like the algorithmic pseudocode used im p#res of the book. For
more information about the Python programming languagaga visit:

http://www.python.org/

The code in this manual was written and tested using PytHant2will likely work on
newer versions of Python, but some constructs used in theaharay not be valid on
older versions of Python.
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including Alan Black, Susan Brennan, Eric Brill, Michaelldws, Jason Eisner, Jerry
Hobbs, Kevin Knight, Peter Norvig, Martha Palmer, Bo Pangg Pedersen, Martin
Porter, Stuart Shieber, and many others.



Chapter 2 |
Regular Expressions and Automata

2.1 Write regular expressions for the following languages. Yoay use either
Perl/Python notation or the minimal “algebraic” notatioh Section 2.3, but
make sure to say which one you are using. By “word”, we meani@maaetic
string separated from other words by whitespace, any meteuanctuation, line
breaks, and so forth.

1. the set of all alphabetic strings;
[a-zA-Z]+
2. the set of all lower case alphabetic strings endinghn a
[a-z] =*b
3. the set of all strings with two consecutive repeated wéeds., “Humbert
Humbert” and “the the” but not “the bug” or “the big bug”);
([a-zA-Z]+)\s+\1
4. the set of all strings from the alphalkeb such that each is immediately
preceded by and immediately followed by;a
(b+(ab+)+)?
5. all strings that start at the beginning of the line with mteger and that end
at the end of the line with a word;
A\d+\b.  *\b[a-zA-Z]+$
6. all strings that have both the wogtotto and the wordavenin them (but
not, e.g., words likgrottosthat merelycontainthe wordgrotto);
\bgrotto\b. *\braven\b|\braven\b. *\bgrotto\b
7. write a pattern that places the first word of an Englishesgs# in a register.
Deal with punctuation.
Ta-zA-Z] = ([a-zA-Z]+)

2.2 Implement an ELIZA-like program, using substitutions sashthose described
on page 26. You may choose a different domain than a Rogesighplogist,
if you wish, although keep in mind that you would need a donmaimhich your
program can legitimately engage in a lot of simple repaetitio

The following implementation can reproduce the dialog ogg26.
A more complete solution would include additional patterns
import re, string

patterns = [

(r"\b(i'm|i am)\b", "YOU ARE"),

(r"\b(ijme)\b", "YOU"),

(r"\b(my)\b", "YOUR"),

(rb(well,?) ", ™),

(r". * YOU ARE (depressed|sad) . *",
"l AM SORRY TO HEAR YOU ARE \1"),

(r". * YOU ARE (depressed|sad) . *",
r"WHY DO YOU THINK YOU ARE \1"),

1



2 Chapter 2. Regular Expressions and Automata

(.« all . ", "IN WHAT WAY"),
(r". * always . *", "CAN YOU THINK OF A SPECIFIC EXAMPLE"),
(r'[%s]" % re.escape(string.punctuation), "),
1
while True:
comment = raw_input()
response = comment.lower()
for pat, sub in patterns:
response = re.sub(pat, sub, response)
print response.upper()

2.3 Complete the FSA for English money expressions in Fig. 2slduggested in the
text following the figure. You should handle amounts up to®%000, and make
sure that “cent” and “dollar” have the proper plural endingeen appropriate.

two
three
four hundred
';Tf twenty
seven iy
fourty
fifty
sixty
“9" seventy
eleven PO
oy twelve ety
fourty thirteen
fifty fourteen
sixty fiteen
seventy o | sixteen one
sighty’ iseventeen two
ninety ten o | ighteen s
nineteen
eleven cents four
twelve five
thirteen thousand six
fourteen seven
fifteen thousand eight
sixteen nine

seventeen
eighteen
nineteen  thousand

thousand

twenty
dollars ity
cents fourty
dollars fifty
7 one
dollars ten s j:;%y two
two  eleven eighty three
three  twelve ninety four
four  thirteen five
dollars five fourteen six
six  fifteen seven
seven  Sixteen eight
ten eight Seventeen nine

one eleven

nine  eighteen
nineteen

twenty
thirty

fourty
fifty

two  twelve
three thirteen
four fourteen
five fifteen

cents

six  sixteen sixty

sevenseventeen seventy six
eight eighteen eighty seven
nine nineteen ninety eight

2.4 Design an FSA that recognizes simple date expressionMiéeh 15 the 22nd
of NovemberChristmas You should try to include all such “absolute” dates
(e.g., not “deictic” ones relative to the current day, like day before yesterdpy
Each edge of the graph should have a word or a set of words &ottshould
use some sort of shorthand for classes of words to avoid dgpiebd many arcs
(e.g., furniture— desk, chair, table).

1st
2nd
January
31st February
December

New Year
Memorial Day

Christmas

January
February
31
December



2.5 Now extend your date FSA to handle deictic expressionsyldsterdaytomor-
row, a week from tomorrowthe day before yesterdagunday next Monday

three weeks from Saturday

Monday
Tuesday

Sunday
rday
. Monday  today

Tuesday tomorrow

January
February

New Year Monday \31st
yesterday Memorial Day Tuesday

today
tomorrow  Christmas ~ Sunday

December

Sunday

from

January
February three

December

2.6 Write an FSA for time-of-day expressions likkeven o’clocktwelve-thirty mid-
night, or a quarter to tenand others.

eleven

nineteen

2.7 (Thanks to Pauline Welby; this problem probably requires dbility to knit.)
Write a regular expression (or draw an FSA) that matchesrattikg patterns
for scarves with the following specificatio2 stitches wide, K1P1 ribbing on
both ends, stockinette stitch body, exactly two raisedesriAll knitting patterns
must include a cast-on row (to put the correct number oftetcon the needle)
and a bind-off row (to end the pattern and prevent unraviliHgre’s a sample
pattern for one possible scarf matching the above desonipti

1 Knit andpurl are two different types of stitches. The notation Kieans da knit stitches. Similarly for
purl stitches. Ribbing has a striped texture—most swe#tave ribbing at the sleeves, bottom, and neck.
Stockinette stitch is a series of knit and purl rows that poes a plain pattern—socks or stockings are knit

with this basic pattern, hence the name.
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1. Caston 32 stitches. cast on; puts stitches on needle
2. K1 P1across row (i.e., do (K1 P1) 16 timed1P1 ribbing
3. Repeat instruction 2 seven more times.  adds length
4, K32, P32. stockinette stitch
5. Repeat instruction 4 an additional 13 timesadds length
6. P32, P32. raised stripe stitch
7. K32, P32. stockinette stitch
8. Repeat instruction 7 an additional 251 timeadds length
9. P32, P32. raised stripe stitch
10. K32, P32. stockinette stitch
11. Repeat instruction 10 an additional 13 timesdds length
12. K1 P1 across row. K1P1 ribbing
13. Repeat instruction 12 an additional 7 timesadds length
14. Bind off 32 stitches. binds off row: ends pattern

In the expression below; stands forcast on K stands forknit, P
stands fopurl andB stands foibind off

C{32}
((KP){16})+
(K{32}P{32})+
P{32}P{32}
(K{32}P{32})+
P{32}P{32}
(K{32}P{32})+
((KP){16})+
B{32}

2.8 Write a regular expression for the language accepted by BE®Nn Fig. 2.26.

SEOICEE A mystery language.

(aba?)+

2.9 Currently the functiordb-RECOGNIZEIn Fig. 2.12 solves only a subpart of the
important problem of finding a string in some text. Extenddlgorithm to solve
the following two deficiencies: (1p-RECOGNIZE currently assumes that it is
already pointing at the string to be checked, andDBEcoGNIzEfails if the
string it is pointing to includes as a proper substring allsgring for the FSA.
That is,D-RECOGNIZzEfails if there is an extra character at the end of the string.

To address these problems, we will have to try to match our BSA
each point in the tape, and we will have to accept (the cusebt
string) any time we reach an accept state. The former resjaine



additional outer loop, and the latter requires a slightffedént struc-
ture for our case statements:

function D-RECOGNIzHtapemaching returns accept or reject
current-state— Initial state of machine
for indexfrom 0to LENGTH(tapé do
current-state— Initial state of machine
while index< LENGTH(tape and
transition-tablg¢current-statetapgindex] is not emptydo
current-state— transition-tablgcurrent-stateapgindeX]
index<— index+ 1
if current-statds an accept statiden
return accept
index«— index+ 1
return reject
2.10 Give an algorithm for negating a deterministic FSA. The tiegaof an FSA
accepts exactly the set of strings that the original FSActsjéover the same
alphabet) and rejects all the strings that the original F&zepts.

First, make sure that all states in the FSA have outwarditians for
all characters in the alphabet. If any transitions are migsntroduce
a new non-accepting state (tfesl state), and add all the missing
transitions, pointing them to the new non-accepting state.

Finally, make all non-accepting states into acceptingestaand
vice-versa.

2.11 Why doesn’t your previous algorithm work with NFSAs? Nowend your al-
gorithm to negate an NFSA.

The problem arises from the different definition of accept egject
in NFSA. We accept if there is “some” path, and only rejectlif a
paths fail. So a tape leading to a single reject path doesessadly
get rejected, and so in the negated machine does not nebyegsar
accepted.

For example, we might have artransition from the accept state
to a non-accepting state. Using the negation algorithm ebwe
swap accepting and non-accepting states. But we can stédipac
strings from the original NFSA by simply following the tratigns as
before to the original accept state. Though it is now a narepting
state, we can simply follow the-transition and stop. Since the
transition consumes no characters, we have reached artiagcstpte
with the same string as we would have using the original NFSA.

To solve this problem, we first convert the NFSA to a DFSA, and
then apply the algorithm as before.



Chapter 3
Words and Transducers

3.1 Give examples of each of the noun and verb classes in FigaBdbfind some
exceptions to the rules.

Examples:
e noun: fossil
e verh: pass
e verh: conserve
e noun: wonder

Exceptions:
e noun: apologyacceptsizebutapologizationsounds odd
¢ verh: detectacceptsive but it becomes a noun, not an adjective
e verh: causeacceptsativebut causitivenessounds odd

e noun: armacceptsful but it becomes a noun, not an adjective

3.2 Extend the transducer in Fig. 3.17 to deal wsthandch.

One possible solution:
other,#

other,# v




3.3 Write a transducer(s) for the K insertion spelling rule inglish.

One possible solution:
other

e

other,# vowel

l\-s

3.4 Write a transducer(s) for the consonant doubling spelling in English.
One possible solution, where V stands for vowel, and C stémds
consonant:

3.5 The Soundex algorithm (Knuth, 1973; Odell and Russell, 1922 method
commonly used in libraries and older census records foresgmting people’s
names. It has the advantage that versions of the nameselsdigdntly misspelled
or otherwise modified (common, e.g., in hand-written cemsasrds) will still
have the same representation as correctly spelled namgs J(gafsky, Jarofsky,
Jarovsky, and Jarovski all map to J612).

1. Keep the first letter of the name, and drop all occurrentesig-initial a,
e, h,i,o,u,w,y.
2. Replace the remaining letters with the following numbers
b, f, p,Vv— 1
c,0,j,kq,s%x,2>2
dt—3
| —4
m,n—>5
r—=6
3. Replace any sequences of identical numbers, only if tagyelfrom two or
more letters that weradjacentin the original name, with a single number
(e.g., 666— 6).
4. Convertto the fornhetter Digit Digit Digit by dropping digits
past the third (if necessary) or padding with trailing zdiibeecessary).

The exercise: write an FST to implement the Soundex alguarith



8 Chapter 3. Words and Transducers

One possible solution, using the following abbreviations:

V = aeh,i,ouwy
Cl =b,f,p,v

C2 =¢0,J,k0,s %2
C3 =d,t

Ca4 = |

C5 =m,n

C6 =r

'l
Y WKL
“'l ‘r i ;
SN 2\
#0004 ) "'l “‘\ M o2

3.6 Read Porter (1980) or see Martin Porter’s official homepagae Porter stem-
mer. Implement one of the steps of the Porter Stemmer as sdinaar.

Porter stemmer step la looks like:

SSES — SS
IES — |
SS — SS
S —

One possible transducer for this step:




3.7 Write the algorithm for parsing a finite-state transducsmg the pseudocode
introduced in Chapter 2. You should do this by modifying thgodthm ND-
RECOGNIZEIn Fig. 2.19 in Chapter 2.

FSTs consider pairs of strings and outpgteptor reject So the
major changes to theED-RECOGNIZE algorithm all revolve around
moving from looking at a single tape to looking at a pair ofdsp
Probably the most important change is iBEXGERATE-NEW-STATES,
where we now must try all combinations of advancing a charamt
staying put (for arg) on either the source string or the target string.

function ND-RECOGNIzHs-tapet-tapgmaching returns accept/reject

agenda— {(Machine start states-tapestart,t-tapestart)}
while agendais not emptydo

current-state— NExT(agenda

if ACCEPFSTATE?(current-statgthen

return accept

agenda— agendaJ GENERATE-NEW-STATEScurrent-statg

return reject

function GENERATE-NEW-STATEScurrent-staté returns search states

node— the node theurrent-statds on

s-index— the point ons-tapethe current-statds on

t-index« the point ornt-tapethe current-statds on

return
(transitiofnode €:¢], s-index t-indexX U
(transition{node s-tapégs-indey:€], s-index+ 1,t-indeX U
(transitiofnode e:t-tapdt-indey], s-indext-index+ 1) U
(transitionodes-tapgs-index:t-tapgt-indey], s-index-1 t-index+1)

function ACCEPFSTATE?(search-statereturns true/false
node— the node theurrent-statds on
s-index— the point ons-tapethe current-statds on
t-index« the point ort-tapethe current-statds on
return s-indexis at the end of the tapend
t-indexis at the end of the tapand
nodeis an accept state of the machine

3.8 Write a program that takes a word and, using an on-line diatig computes
possible anagrams of the word, each of which is a legal word.

def permutations(string):
if len(string) < 2:
yield string
else:
first, rest = string[:1], string[1:]
indices = range(len(string))
for sub_string in permutations(rest):
for i in indices:
yield sub_string[:i] + first + sub_string][i:]

def anagrams(string):
for string in permutations(string):
if is_word(string): # query online dictionary
yield string
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3.9 InFig.3.17, why is there a, s, xarc fromgs to ¢, ?

Stateq; represents the point at which we have seen at leaszpne
sorx. If the z, s, xarc fromgs to ¢q; were not present, it would
be possible to transition on am sor x back to the initial stategg.
This would allow invalid strings likes"ss s#by following the path
q0 — q1 — g2 — g5 — qo — 41 =~ qo-
3.10 Computing minimum edit distances by hand, figure out whethise is closer
to brief or to diversand what the edit distance is. You may use any version of
distancethat you like.

Using 1-insertion, 1-deletion, 2-substitution costsyéhis a distance
of 4 betweerdrive andbrief:

e565434
v454345
i 343234
r232345
d123456
#012345
#brief

Using 1-insertion, 1-deletion, 2-substitution costsyéhis a distance
of 3 betweerdrive anddivers

o= —<o
HFTORNWLNGg
O R ORFRPNWALAN
T NEFP NP N®w
SWNWNRN
O RN WHDWN R
T ahWPhON
2 NS, I &) B N R

Thus,driveis closer tadiversthan tobrief.

3.11 Now implement a minimum edit distance algorithm and use yaund-computed
results to check your code.

def min_edit_distance(target, source):
n = len(target)
m = len(source)
cols = range(1, n + 1)
rows = range(l, m + 1)

# initialize the distance matrix
distance = {(0, 0): 0}
for i in cols:
mod = ins_cost(target[i - 1])
distance[i, 0] = distance[i - 1, 0] + mod
for j in rows:
mod = del_cost(source[j - 1])
distance[0, j] = distance[0, j - 1] + mod

# sort like (0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) ...
# this guarantees the matrix is filled in the right order
indices = [(i, j) for i in cols for j in rows]
indices.sort(key=sum)
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# helper function for calculating distances

def get_dist(row, col, func, t_char, s_char):
chars = t_char, s_char
args = [char for char in chars if char !=’ *]
return distance[row, col] + func( *args)

# for each pair of indices, choose insertion, substitution
# or deletion, whichever gives the shortest distance
for i, j in indices:

t_char = targetfi - 1]

s_char = source[j - 1]

distance[i, j] = min(

get dist(i -1, ], ins_cost, t_char, ’ *7),
get dist(i - 1, j - 1, sub_cost, t_char, s_char),
get_dist(i, j - 1, del_cost, ’ *) s_char))

# return distance from the last row and column
return distance[n, m]

3.12 Augment the minimum edit distance algorithm to output agratient; you will
need to store pointers and add a stage to compute the bazktrac

def min_edit(target, source):
n = len(target)
m = len(source)
cols = range(1, n + 1)
rows = range(l, m + 1)

# initialize the distance and pointer matrices
distance = {(0, 0): O}
pointers = {(0, 0): (None, None, None, None)}
for i in cols:
t_char = target[i - 1]
distance[i, 0] = distance[i - 1, 0] + ins_cost(t_char)
pointersfi, 0] = (i - 1, O, t_char, ’ *7)
for j in rows:
s_char = source[j - 1]
distance[0, j] = distance[0, j - 1] + del_cost(s_char)
pointers[0, j] = (0, j - 1, *'s_char)

# sort like (0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) ...
# this guarantees the matrix is filled in the right order
indices = [(i, j) for i in cols for j in rows]
indices.sort(key=sum)

# helper function for creating distance/pointer pairs
def get_pair(row, col, func, t_char, s_char):
chars = t_char, s_char
args = [char for char in chars if char != *']
dist = distance[row, col] + func( *args)
pointer = row, col, t_char, s_char
return dist, pointer

# for each pair of indices, choose insertion, substitution
# or deletion, whichever gives the shortest distance
for i, j in indices:

t_char = target[i - 1]

s_char = source[j - 1]

pairs = [
get_pair(i -1, |, ins_cost, t_char, ’ *),
get_pair(i - 1, j - 1, sub_cost, t_char, s_char),
get_pair(i, j - 1, del_cost, ’ *' s_char),

]

dist, pointer = min(pairs, key=operator.itemgetter(0))

distance[i, j] = dist
pointers[i, j] = pointer

# follow pointers backwards through the path selected
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t chars = []
s_chars =[]
row, col = n, m
while True:

row, col, t _char, s_char = pointers[row, col]
if row is col is None:

break
t_chars.append(t_char)
s_chars.append(s_char)

# return distance, and two character strings
target_string = ".join(reversed(t_chars))
source_string = ”.join(reversed(s_chars))

return distance[n, m], target_string, source_string



Chapter 4
N-Grams

4.1 Write out the equation for trigram probability estimationddifying Eq. 4.14).

C(Wn—2Wn—1Wn)

P(wn|'lUn71,wn72) - C(Wn_2wn_1)

4.2 Write a program to compute unsmoothed unigrams and bigrams.

from __ future__ import division

from collections import defaultdict as ddict
import itertools

import math

import random

class NGrams(object):
def __init__ (self, max_n, words=None):
self._max_n = max_n
self._n_range = range(1, max_n + 1)
self._counts = ddict(lambda: 0)

# if words were supplied, update the counts
if words is not None:
self.update(words)

def update(self, words):
# increment the total word count, storing this under
# the empty tuple - storing it this way simplifies
# the _probability() method
self._counts[()] += len(words)

# count ngrams of all the given lengths
for i, word in enumerate(words):
for n in self._n_range:
if i + n <= len(words):
ngram_range = xrange(i, i + n)
ngram = [words[j] for j in ngram_range]
self._counts[tuple(ngram)] += 1

def probability(self, words):
if len(words) <= self._max_n:
return self._probability(words)
else:
prob = 1
for i in xrange(len(words) - self._max_n + 1):
ngram = wordsl[i:i + self._max_n]
prob *= self._probability(ngram)
return prob

def _probability(self, ngram):
# get count of ngram and its prefix
ngram = tuple(ngram)
ngram_count = self._counts[ngram]
prefix_count = self._counts[ngram[:-1]]

# divide counts (or return 0.0 if not seen)
if ngram_count and prefix_count:

return ngram_count / prefix_count
else:

return 0.0

13



14 Chapter 4. N-Grams

4.3 Run yourN-gram program on two different small corpora of your choigeu
might use email text or newsgroups). Now compare the dtsisf the two
corpora. What are the differences in the most common unigtastween the
two? How about interesting differences in bigrams?

A good approach to this problem would be to sort fliggrams for
each corpus by their probabilities, and then examine the ¥D6-
200 for each corpus. Both lists should contain the commoantfon
words, e.g.the of, to, etc near the top. The content words are proba-
bly where the more interesting differences are — it shoulddssible

to see some topic differences between the corpora from.these

4.4 Add an option to your program to generate random sentences.

class NGrams(object):

def generate(self, n_words):
# select unigrams
ngrams = iter(self._counts)
unigrams = [x for x in ngrams if len(x) == 1]

# keep trying to generate sentences until successful
while True:
try:
return self._generate(n_words, unigrams)
except RuntimeError:
pass

def _generate(self, n_words, unigrams):
# add the requested number of words to the list
words = []
for i in itertools.repeat(self._max_n):

# the prefix of the next ngram
if i ==

prefix = ()
else:

prefix = tuple(words[-i + 1:])

# select a probability cut point, and then try
# adding each unigram to the prefix until enough
# probability has been seen to pass the cut point
threshold = random.random()
total = 0.0
for unigram in unigrams:
total += self._probability(prefix + unigram)
if total >= threshold:
words.extend(unigram)
break

# return the sentence if enough words were found
if len(words) == n_words:
return words

# exit if it was impossible to find a plausible
# ngram given the current partial sentence
if total == 0.0:

raise RuntimeError('impossible sequence’)
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4.5 Add an option to your program to do Good-Turing discounting.

class GoodTuringNGrams(NGrams):
def __init__(self, max_n, words=None):

self._default_probs = {}
self._smoothed_counts = ddict(lambda: 0)
super(GoodTuringNGrams, self).__init__(max_n, words)

def update(self, words):

def

super(GoodTuringNGrams, self).update(words)

# calculate number of ngrams with each count
vocab_counts = ddict(lambda: 0)
count_counts = ddict(lambda: ddict(lambda: 0))
for ngram in self._counts:
vocab_counts[len(ngram)] += 1
count_counts[len(ngram)][self._counts[ngram]] += 1

# determine counts for zeros
defaults = self._default_probs
defaults[0] = 0.0

for n in self._n_range:

# missing probability mass is the number of ngrams
# seen once divided by the number of ngrams seen
seen_count = vocab_counts[n]

missing_mass = count_counts[n][1] / seen_count

for unigrams, there is no way to guess the number
of unseen items, so the extra probability mass is
arbitrarily distributed across as many new items
as there were old items
n==1

defaults[n] = missing_mass / seen_count

B R i3

=

# for other ngrams, the extra probability mass

# is distributed across the remainder of the

# V = N ngrams possible given V unigrams

else:
possible_ngrams = vocab_counts[1] ]
unseen_count = possible_ngrams - seen_count
defaults[n] = missing_mass / unseen_count

# apply the count smoothing for all existing ngrams
self._smoothed_counts[()] = self._counts[()]
for ngram in self._counts:

if len(ngram) ==

continue

count = self._counts[ngram]

one_more = count_counts[len(ngram)][count + 1]

same = count_counts[len(ngram)][count]

smoothed_count = (count + 1) * one_more / same

self._smoothed_counts[ngram] = smoothed_count

_probability(self, ngram):
# if ngram was never seen, return default probability
ngram = tuple(ngram)
ngram_count = self._counts[ngram]
if ngram_count ==
return self._default_probs[len(ngram)]

# divide smoothed counts (or return 0.0 if not seen)
else:
ngram_count = self._smoothed_counts[ngram]
prefix_count = self._smoothed_counts[ngram[:-1]]
if ngram_count and prefix_count:
return ngram_count / prefix_count
else:
return 0.0
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4.6 Add an option to your program to implement Katz backoff.

class KatzBackoffNGrams(GoodTuringNGrams):
def _discounted_probability(self, ngram):
return super(KatzBackoffNGrams, self)._probability(ng ram)

def _alpha(self, ngram):
get_prob = self._discounted_probability
longer_grams = [x for x in self._counts if x[:-1] == ngram]
longer_prob = sum(get_prob(x) for x in longer_grams)
suffix_prob = sum(get_prob(x[1:]) for x in longer_grams)
return (1 - longer_prob) / (1 - suffix_prob)

def _probability(self, ngram):
ngram = tuple(ngram)
if ngram in self._counts:
return self._discounted_probability(ngram)
else:
alpha = self._alpha(ngram[:-1])
prob = self._probability(ngram[1:])
return alpha * prob

4.7 Add an option to your program to compute the perplexity ofst set.

class NGrams(object):

aéf perplexity(self, words):
prob = self.probability(words)
return math.pow(prob, -1 / len(words))

4.8 (Adapted from Michael Collins). Prove Eq. 4.27 given Eq.64ahd any neces-
sary assumptions. That is, show that given a probabilityidigion defined by
the GT formulain Eq. 4.26 for thd items seen in training, the probability of the
next (i.e.,N + 1st) item being unseen in training can be estimated by Eq. 4.27
You may make any necessary assumptions for the proof, imgusuming that
all N, are non-zero.

The missing mass is just the sum of the probabilities of alitbrams
that were not yet seen:

missing mass =", counta)=o (%)
< (@)

= Zm:countm):o N

Now using Eq. 4.26:
. 0+1) Yox1
missing mass =>_...counta)—o %
— N
- Zm:countm)zo N—]{/'o
= M Z 1
N-Ng z:CoUN{2)=0
But the sum of all ngrams with a count of zero is ji)&f, so:

_ N1 .
“N-No No
N

EASE
N

missing mass
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Bag of words

Bag generation

4.9 (Advanced) Suppose someone took all the words in a sententtecardered
them randomly. Write a program that takes as input subagof wordsand
produces as output a guess at the original order. You willl beese anV-gram
grammar produced by you¥-gram program (on some corpus), and you will
need to use the Viterbi algorithm introduced in the next ¢bapThis task is
sometimes calleag generation

This problem is quite difficult. Generating the string wittetmaxi-
mum N-gram probability from a bag of words is NP-completee(se
e.g., Knight (1999a)), so solutions to this problem shotltig to
generate the maximum probability string. A good approagirab-
ably to use one of the beam-search versions of Viterbi or-firsst
search algorithms introduced for machine translation ctiSe 25.8,
collapsing the probabilities of candidates that use theesaords in
the bag.

Another approach is to modify Viterbi to keep track of the slet
words used so far at each state in the trellis. This appraacloser
to Viterbi as discussed in the next chapter, but throws awapym
less probable partial bags at each stage, so it doesn’tsterentire
space and can’t promise to produce the optimal word order.

import collections
ddict = collections.defaultdict

def guess_order(ngrams, word_bag):
# convert list of words into word counts
word_counts = ddict(lambda: 0)
for word in word_bag:
word_counts[word] += 1

# helper for creating new word counts minus one word
def removed(word_counts, word):

word_counts = word_counts.copy()

assert word_counts[word] > 0

word_counts[word] -= 1

return word_counts

# initialize the matrices for probabilities, backpointers
# and words remaining to be used
probs = ddict(lambda: ddict(lambda: 0))
pointers = ddict(lambda: {})
remaining = ddict(lambda: {})
for word in word_counts:
probs[0][word] = 1.0
pointers[O][word] = None
remaining[O][word] = removed(word_counts, word)

# for each word in the sentence-to-be, determine the best
# previous word by checking bigram probabilities
for i in xrange(1, len(word_bag)):

for word in word_counts:

# helper for calculating probability of going to
# this word from the previous, giving impossible
# values to words that have been used already
def get_prob(other_word):
if not remaining[i - 1][other_word]{word]:
return -1
prob = ngrams.probability((other_word, word))
return probs[i - 1][other_word] * prob
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Authorship
attribution

# select the best word and update the matrices
best_word = max(word_counts, key=get_prob)
probs]i][word] = get_prob(best_word)
pointers[illword] = best_word

best_remaining = remaining[i - 1][best_word]
remaining[illword] = removed(best_remaining, word)

# get the best final state
def get_final_prob(word):
return probsi][word]
curr_word = max(word_counts, key=get_final_prob)

# follow the pointers to get the best state sequence
word_list = []
for i in xrange(i, -1, -1):

word_list.append(curr_word)

curr_word = pointers]i][curr_word]
word_list.reverse()
return word_list

4.10 The field ofauthorship attribution is concerned with discovering the author of

a particular text. Authorship attribution is important irany fields, including
history, literature, and forensic linguistics. For examosteller and Wallace
(1964) applied authorship identification techniques te@alier who wroteThe
Federalistpapers. The Federalist papers were written in 1787-1788éxaA-
der Hamilton, John Jay, and James Madison to persuade Nektdamatify
the United States Constitution. They were published anaugty, and as a re-
sult, although some of the 85 essays were clearly attriteitabone author or
another, the authorship of 12 were in dispute between Haménhd Madison.
Foster (1989) applied authorship identification technégioesuggest that W.S.’s
Funeral Elegyfor William Peter might have been written by William Shake-
speare (he turned out to be wrong on this one) and that theyarars author of
Primary Colors the roman a clef about the Clinton campaign for the America
presidency, was journalist Joe Klein (Foster, 1996).

A standard technique for authorship attribution, first usgdosteller and
Wallace, is a Bayesian approach. For example, they traipeoksbilistic model
of the writing of Hamilton and another model on the writingsvtadison, then
computed the maximume-likelihood author for each of the disg essays. Many
complex factors go into these models, including vocabuless, word length,
syllable structure, rhyme, grammar; see Holmes (1994) feuramary. This
approach can also be used for identifying which genre a taxies from.

One factor in many models is the use of rare words. As a simmbeox-
imation to this one factor, apply the Bayesian method to tirébation of any
particular text. You will need three things: a text to testl &wo potential au-
thors or genres, with a large computer-readable text saofpéach. One of
them should be the correct author. Train a unigram languagdehon each
of the candidate authors. You are going to use onlysihgleton unigrams in
each language model. You will compulT|A;), the probability of the text
given author or genrd, by (1) taking the language model framy, (2) multi-
plying together the probabilities of all the unigrams thetur only once in the
“unknown” text, and (3) taking the geometric mean of these (thenth root,
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wheren is the number of probabilities you multiplied). Do the sarpe A.
Choose whichever is higher. Did it produce the correct cdetei?

This approach can perform well by finding odd vocabulary cési
(singleton unigrams) that are unique to one author or therothx-

ploring author pairs with varying degrees of similarity slibgive a

good idea of the power (and limitations) of this approach.
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Part-of-Speech Tagging

5.1 Find one tagging error in each of the following sentences dha tagged with
the Penn Treebank tagset:
1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
Atlanta/NNP
2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
dinner/NN
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NRN
have/VBP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoonfligihts/NNS
Can/MD
5.2 Use the Penn Treebank tagset to tag each word in the follosengences from
Damon Runyon’s short stories. You may ignore punctuatiem&of these are
quite difficult; do your best.
1. Itis anice night.
It/PRP is/VBZ a/DT nice/JJ night/NN ./.
2. This crap game is over a garage in Fifty-second Street. ..
This/DT crap/NN game/NN is/VBZ over/IN a/DT garage/NN
in/IN Fifty-second/NNP Street/NNP. . .
3. ...Nobody ever takes the newspapers she sells . ..
... Nobody/NN ever/RB takes/VBZ the/DT newspapers/NNS
she/PRP sells/VBZ...
4. He is atall, skinny guy with a long, sad, mean-looking&isand a mourn-
ful voice.
He/PRP is/VBZ a/DT tall/dJ ,/, skinny/JJ guy/NN with/IN &D
long/JJd ,/, sad/JJd ,/, mean-looking/JJ kisser/NN ,/, aBddDT
mournful/JJ voice/NN ./.
5. ...l am sitting in Mindy's restaurant putting on the gédiffish, which is a
dish | am very fond of, ...
... [/PRP am/VBP sitting/VBG in/IN Mindy/NNP 's/POS restau
rant/NN putting/VBG on/RP the/DT gefillte/NN fish/NN ,/,
which/WDT is/VBZ a/DT dish/NN I/PRP am/VBP very/RB
fond/JJ of/IRP /, ...
6. When a guy and a doll get to taking peeks back and forth atether, why
there you are indeed.
When/WRB a/DT guy/NN and/CC a/DT doll/NN get/VBP to/TO
taking/VBG peeks/NNS back/RB and/CC forth/RB at/IN
each/DT other/3J ,/, why/WRB there/EX you/PRP are/VBP in-
deed/RB ./.

20
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53

54

5.5

Now compare your tags from the previous exercise with onewor ftiend’s
answers. On which words did you disagree the most? Why?

It should be nearly impossible for two people to come up withodly
the same tags for all words in all the above sentences. Sortie of
more difficult phrases are probakbtpbody gefillte fish each other
andthere you are

Now tag the sentences in Exercise 5.2; use the more detaitednBtagset in
Fig. 5.7.

1. I/PPS is/BEZ a/AT nice/JJ night/NN ./.

2. This/DT crap/NN game/NN is/BEZ over/IN a/AT garage/NN
in/IN Fifty-second/NP Street/NP

3. ...Nobody/NN ever/RB takes/VBZ the/AT newspapers/NNS
she/PPS sells/VBZ

4. He/PPS is/BEZ a/AT tall/dd ,/, skinny/JJ guy/NN with/IM\&
long/JJd ./, sad/JJ ,/, mean-looking/JJ kisser/NN ,/, aBdiAT
mournful/JJ voice/NN ./.

5. ...1/PPSS am/BEM sitting/VBG in/IN Mindy’s/NP$
restaurant/NN putting/VBG on/RP the/AT gefillte/NN fish/NN
J, which/WDT is/BEZ a/AT dish/NN I/PPSS am/BEM very/RB
fond/JJ of/IRP /, ...

6. When/WRB a/AT guy/NN and/CC a/AT doll/NN get/VB to/TO
taking/VBG peeks/NNS back/RB and/CC forth/RB at/IN
each/DT other/JJ ,/, why/WRB there/EX you/PPSS are/BER in-
deed/RB ./.

Implement the TBL algorithm in Fig. 5.21. Create a small nemtif templates
and train the tagger on any POS-tagged training set you cdn fin

See Exercise 5.6 for the definition dostLikelyTagModel
which is used as a basis for the TBL implementation below. eNot
that this implementation only includes rules looking forilmgée tag

in the surrounding tags, and not rules looking for multiglgs.

from __ future__ import division

class Transform(object):
def __init_ (self, old_tag, new_tag, key_tag, start, end)
self._old_tag = old_tag
self._new_tag = new_tag
self._key_tag = key_tag
self._start = start
self._end = end

def apply(self, tags):

# for each tag that matches the old_tag
for i, tag in enumerate(tags):
if tag == self._old_tag:

# if the key tag is in the window, change to new_tag
start = max(0, i + self._start)
end = max(0, i + self._end)
if self._key_tag in tags[start:end]:
tags[i] = self._new_tag
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class TBLModel(MostLikelyTagModel):
def train(self, tagged_sentences):
super(TBLModel, self).train(train_data)
self._transforms = []

# collect the most likely tags

tags = []

correct_tags = []

for train_words, train_tags in tagged_sentences:
model_tags = super(TBLModel, self).predict(train_words
tags.extend(model_tags)
correct_tags.extend(train_tags)

# generate all possible transforms that:
# change an old_tag at index i to a new_tag
# if key_tag is in tags[i + start: i + end]
transforms = []
windows = [(-3,0), (-2,0), (-1,0), (0,1), (0,2), (0,3)]
tag_set = set(correct_tags)
for old_tag in tag_set:
for new_tag in tag_set:
for key_tag in tag_set:
for start, end in windows:
transforms.append(Transform(
old_tag, new_tag, key_tag, start, end))

# helper for scoring predicted tags against the correct ones
def get_error(tags, correct_tags):
incorrect = 0
for tag, correct_tag in zip(tags, correct_tags):
incorrect += tag != correct_tag
return incorrect / len(tags)

# helper for getting the error of a transform
def transform_error(transform):
tags_copy = list(tags)
transform.apply(tags_copy)
return get_error(tags_copy, correct_tags)

# look for transforms that reduce the current error
old_error = get_error(tags, correct_tags)
while True:

# select the transform that has the lowest error, and
# stop searching if the overall error was not reduced
best_transform = min(transforms, key=transform_error)
best_error = transform_error(best_transform)
if best_error >= old_error:

break

# add the transform, and apply it to the tags
old_error = best_error
self._transforms.append(best_transform)
best_transform.apply(tags)

def predict(self, sentence):
# get most likely tags, and then apply transforms
tags = super(TBLModel, self).predict(sentence)
for transform in self._transforms:
transform.apply(tags)
return tags
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5.6 Implement the “most likely tag” baseline. Find a POS-taggadhing set, and
use it to compute for each word the tag that maximjzego). You will need to
implement a simple tokenizer to deal with sentence bourda8tart by assum-
ing that all unknown words are NN and compute your error rat&mown and

unknown words.
(Implementing a tokenizer was omitted below - sentencesaare
sumed to already be parsed into words and part-of-speesl) tag

from __ future__ import division
from collections import defaultdict as ddict

class MostLikelyTagModel(object):
def __init__ (self):
super(MostLikelyTagModel, self).__init_ ()
self._word_tags = {}

def train(self, tagged_sentences):
# count number of times a word is given each tag
word_tag_counts = ddict(lambda: ddict(lambda: 0))
for words, tags in tagged_sentences:
for word, tag in zip(words, tags):
word_tag_counts[word][tag] += 1

# select the tag used most often for the word
for word in word_tag_counts:
tag_counts = word_tag_counts[word]
tag = max(tag_counts, key=tag_counts.get)
self._word_tags[word] = tag

def predict(self, sentence):
# predict the most common tag, or NN if never seen
get_tag = self._word_tags.get
return [get_tag(word, 'NN’) for word in sentence]

def get_error(self, tagged_sentences):
# get word error rate
word_tuples = self._get_word_tuples(tagged_sentences)
return self._get_error(word_tuples)

def get_known_unknown_error(self, tagged_sentences):
# split predictions into known and unknown words
known = []
unknown = []
for tup in self._get_word_tuples(tagged_sentences):

word, _, _ = tup
dest = known if word in self._word_tags else unknown
dest.append(tup)

# calculate and return known and unknown error rates
return self._get_error(known), self._get_error(unknow n)

def _get_word_tuples(self, tagged_sentences):
# convert a list of sentences into word-tag tuples
word_tuples = []
for words, tags in tagged_sentences:
model_tags = self.predict(words)
word_tuples.extend(zip(words, tags, model_tags))
return word_tuples

def _get_error(self, word_tuples):
# calculate total and incorrect labels
incorrect = 0
for word, expected_tag, actual_tag in word_tuples:
if expected_tag != actual_tag:
incorrect += 1
return incorrect / len(word_tuples)
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Now write at least five rules to do a better job of tagging unvknaevords, and
show the difference in error rates.

class RulesModel(MostLikelyTagModel):
def predict(self, sentence):
tags = super(RulesModel, self).predict(sentence)
for i, word in enumerate(sentence):
if word not in self._word_tags:

# capitalized words are proper nouns
# about 20% improvement on unknown words
if word.istitle():

tags[i] = 'NNP’

# words ending in -s are plural nouns
# about 10% improvement on unknown words
elif word.endswith(’s’):

tags[i] = 'NNS’

# words with an initial digit are numbers
# about 7% improvement on unkown words
elif word[0].isdigit():

tags[i] = 'CD’

# words with hyphens are adjectives
# about 3% improvement on unknown words
elif -’ in word:

tagsfi] = '3

# words ending with -ing are gerunds
# about 2% improvement on unknown words
elif word.endswith(’ing’):
tags[i] = 'VBG’
return tags
5.7 Recall that the Church (1988) tagger is not an HMM taggeresihincorporates
the probability of the tag given the word:

P(tagword) « P(tagpreviousn tags (5.1)

rather than using the likelihood of the word given the tagaaHMM tagger
does:

P(wordtag) * P(tagpreviousn tags (5.2)

Interestingly, this use of a kind of “reverse likelihood"sharoven to be useful
in the modern log-linear approach to machine translatiee (|ge 903). As a
gedanken-experiment, construct a sentence, a set of tagitioa probabilities,
and a set of lexical tag probabilities that demonstrate aiwaghich the HMM
tagger can produce a better answer than the Church taggecreate another
example in which the Church tagger is better.

The Church (1988) and HMM taggers will perform differentien,
given two tags, tagand tag,:

P(tag |word) > P(tag:|word)
but,
P(wordtag;) < P(wordtag)
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This happens, for example, with words lik@nufacturingvhich was
associated with the following probabilities in a sample efttfrom
the Wall Street Journal:

P(VBG|manufacturing = 0.231
P(NN|manufacturing = 0.769
P(manufacturinyBG) = 0.004
P(manufacturingfNN) = 0.001

Thus, if we are looking at the words and we geanufacturingwe
expect this word to receive the tag NN, not the tag VBG. Butéf w
are looking at the tags, we exp@canufacturingo be produced more
often from a VBG state than from an NN state.

Given a word like this, we can construct situations wherpegit
the Church (1988) tagger or the HMM tagger produces the wrong
result by building a simple transition table where all tiioes are
equally likely, e.g.:

P(NN|<s>) = P(VBG|<s>) = 0.5
Then the HMM model will select the VBG label:

P(manufacturing\NN) x P(NN|<s>) = 0.001 % 0.5 = 0.0005
P(manufacturin/BG) « P(VBG|<s>) = 0.004 % 0.5 = 0.002

while the Church (1988) tagger will select the NN label:

P(NN|manufacturing* P(NN|<s>) = 0.769 % 0.5 = 0.3845
P(VBG|manufacturingx P(VBG|<s>) = 0.231 % 0.5 = 0.1155

If we have a phrase likManufacturing plants are usefuthen the
Church (1988) tagger has the better answer, while if we hplease
like Manufacturing plants that are brightly colored is populdnen
the HMM tagger has the better answer.

5.8 Build a bigram HMM tagger. You will need a part-of-speechgad corpus.
First split the corpus into a training set and test set. Fimeridbeled training set,
train the transition and observation probabilities of tHdM tagger directly on
the hand-tagged data. Then implement the Viterbi algoritorm this chapter
and Chapter 6 so that you can decode (label) an arbitrargeagtnce. Now run
your algorithm on the test set. Report its error rate and @mjts performance
to the most frequent tag baseline.

Note that it's extremely important that the probabilitiégained from
the corpus are smoothed, particularly the probability ofteémg a
word from a particular tag. If they aren’t smoothed, then awyd
never seen in the training data will have an emission prdibabf
zero for all states, and an entire column of the Viterbi deavdl
have probability zero.

With even a simple smoothing model though, the HMM tagger
should outperform the most frequent tag baseline. See thpt€h6
exercises for HMM code.
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5.9 Do an error analysis of your tagger. Build a confusion madrid investigate the
most frequent errors. Propose some features for improhiagéerformance of
your tagger on these errors.

Some common confusions are nouns vs. adjectives, commarsnou
VS. proper nouns, past tense verbs vs. past participle &b sA va-
riety of features could be proposed to address such probtamsgh
one obvious one is including capitalization informatiorhtp iden-
tify proper nouns.

5.10 Compute a bigram grammar on a large corpus and re-estimasp#iling cor-
rection probabilities shown in Fig. 5.25 given the correxjisence. . was called
a “stellar and versatileacresswhose combination of sass and glamour has de-
fined her...™. Does a bigram grammar prefer the correct wacttes®

Scoring corrections using the bigram probability:
P(corrected-worfprevious-wordl
instead of the unigram probability
P(corrected-wordl
should makeactressmore probable, sinceersatile actresés much
more likely to occur in a corpus tharersatile acres

5.11 Read Norvig (2007) and implement one of the extensions hgesig to his
Python noisy channel spellchecker.

Some of the suggested extensions are:

e Improve the language model by using Ahrgram model instead
of a unigram one.

e Improve the error model so that it knows something about-char
acter substitutions. For example, changadyesto addressor
thayto theyshould be penalized less than changidgesto acres
orthaytothat This will likely require allowing two character ed-
its to sometimes be less expensive than one character &ldits.
setting such weights manually is likely to be difficult, scstivill
probably require training on a corpus of spelling mistakes.

¢ Allow unseen verbs to be created from seen verbs by addiuhg
unseen nouns to be created from seen nouns by aegliaty.

¢ Allow words with edit distance greater than two, but withait
lowing all possible sequences with edit distance three. eixer
ample, allow vowel replacements or similar consonant pla
ments, but no other types of edits.
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Hidden Markov and
Maximum Entropy Models

6.1 Implement the Forward algorithm and run it with the HMM in F&3 to com-
pute the probability of the observation sequeng®$122313and 331123312
Which is more likely?

An HMM that calculates probabilities with the forward algbm:

from collections import defaultdict as ddict

class HMM(object):
INITIAL = ' «Initial ~ *’
FINAL = ' xFinal *’

def __init_ (self):
self._states = []
self._transitions = ddict(lambda: ddict(lambda: 0.0))
self._emissions = ddict(lambda: ddict(lambda: 0.0))

def add(self, state, transition_dict={}, emission_dict= 3):
self._states.append(state)

# build state transition matrix
for target_state, prob in transition_dict.items():
self._transitions[state][target_state] = prob

# build observation emission matrix
for observation, prob in emission_dict.items():
self._emissions[state][observation] = prob

def probability(self, observations):
# get probability from the last entry in the trellis
probs = self._forward(observations)
return probs[len(observations)][self.FINAL]

def _forward(self, observations):
# initialize the trellis
probs = ddict(lambda: ddict(lambda: 0.0))
probs[-1][self.INITIAL] = 1.0

# update the trellis for each observation

i=-1

for i, observation in enumerate(observations):
for state in self._states:

# sum the probabilities of transitioning to
# the current state and emitting the current
# observation from any of the previous states
probsJi][state] = sum(
probs[i - 1][prev_state] *
self._transitions[prev_state][state] *
self._emissions[state][observation]
for prev_state in self._states)

# sum the probabilities for all states in the last
# column (the last observation) of the trellis
probs[len(observations)][self.FINAL] = sum(

probsli][state] for state in self._states)
return probs
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Building the HMM in Fig. 6.3, we see that the seque884123312
is more likely than the sequen881122313

>>> hmm = HMM()

>>> hmm.add(HMM.INITIAL, dict(H=0.8, C=0.2))
>>> hmm.add('H’, dict(H=0.7, C=0.3), {
>>> hmm.add('C’, dict(H=0.4, C=0.6), {
>>> hmm.probability([3, 3, 1, 1, 2, 3, 3, 1, 2])
3.9516275425280015e-005

>>> hmm.probability([3, 3, 1, 1, 2, 2, 3, 1, 3)])
3.575714750873601e-005

6.2 Implementthe Viterbi algorithm and run it with the HMM in Fi§.3 to compute
the most likely weather sequences for each of the two obsenvaequences
above 33112231&nd331123312

Here, we add a method for using the Viterbi algorithm to prettie
most likely sequence of states given a sequence of obsamgaflhe
code closely mirrors that of the forward algorithm, but led&r the
maximum probability instead of the sum, and keeps a tableaokb
pointers to recover the best state sequence.

class HMM(object):

1.2, 2.4
1.5, 2.4,

. 3.4))
3.1}

def predict(self, observations):
# initialize the probabilities and backpointers
probs = ddict(lambda: ddict(lambda: 0.0))
probs[-1][self.INITIAL] = 1.0
pointers = ddict(lambda: {})

# update the probabilities for each observation

i = -

for i, observation in enumerate(observations):
for state in self._states:

# calculate probabilities of taking a transition

# from a previous state to this one and emitting

# the current observation

path_probs = {}

for prev_state in self._states:

path_probs[prev_state] = (

probs[i - 1][prev_state] *
self._transitions[prev_state][state] *
self._emissions[state][observation])

# select previous state with the highest probability
best_state = max(path_probs, key=path_probs.get)
probsli][state] = path_probs[best_state]
pointers|i][state] = best_state

# get the best final state
curr_state = max(probs[i], key=probs[i].get)

# follow the pointers to get the best state sequence
states = []
for i in xrange(i, -1, -1):

states.append(curr_state)

curr_state = pointersli][curr_state]
states.reverse()
return states

Using the HMM from Fig. 6.3 as in 1, we can see tBa112231%&nd
331123312oth correspond to the sequence HHCCHHHHH:

>>> " join(hmm.predict([3, 3, 1, 1, 2, 2, 3, 1, 3]))

"HHCCHHHHH'

>>> " join(hmm.predict([3, 3, 1, 1, 2, 3, 3, 1, 2]))

"HHCCHHHHH'
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6.3 Extend the HMM tagger you built in Exercise 5.8 by adding th#ity to make
use of some unlabeled data in addition to your labeled trginorpus. First ac-
quire a large unlabeled (i.e., no part-of-speech tags)usriNext, implement
the forward-backward training algorithm. Now start witle tHMM parameters
you trained on the training corpus in Exercise 5.8; call thizdel M. Run the
forward-backward algorithm with these HMM parameters teelahe unsuper-
vised corpus. Now you have a new modé]. Test the performance df/; on
some held-out labeled data.

Here, we add a method for training the HMM using the forward-
backward algorithm. We simplify the problem a bit by usingai
number of iterations instead of trying to determine coneagg.

class HMM(object):

def train(self, observations, iterations=100):
# only update non-initial, non-final states
states_to_update = list(self._states)
for state in [self.INITIAL, self.FINAL]:
if state in states_to_update:
states_to_update.remove(state)

# iteratively update states
for _ in range(iterations):

# run the forward and backward algorithms and get the

# probability of the observations sequence

forward_probs = self._forward(observations)

backward_probs = self._backward(observations)

obs_prob = forward_probs[len(observations)][self.FINA L]

# calculate probabilities of being at a given state and

# emitting observation i

emission_probs = ddict(lambda: {})

for i, observation in enumerate(observations):

for state in states_to_update:
emission_probs]i][state] = (

forward_probsi][state] *
backward_probs]i][state] /
obs_prob)

# calculate probabilities of taking the transition
# between a pair of states for observations i and i + 1
transition_probs = ddict(lambda: ddict(lambda: {}))
transition_indices = range(len(observations) - 1)
for i in transition_indices:

next_obs = observations[i + 1]

for statel in states_to_update:

for state2 in states_to_update:
transition_probsJi][statel][state2] = (

forward_probsii][statel] *
self._transitions[statel][state2] *
self._emissions[state2][next_obs] *
backward_probs[i + 1][state2] /

obs_prob)

# update transition probabilities by summing the
# probabilities of each state-state transition
for statel in states_to_update:
total = 0
for state2 in states_to_update:
count = self._transitions[statel][state2] = sum(
transition_probsi][state1][state2]
for i in transition_indices)
total += count
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# normalize counts into probabilities
if total:
for state2 in states_to_update:
self._transitions[state1][state2] /= total

# find which observations occurred at which indices

observation_indices = ddict(lambda: [])

for i, observation in enumerate(observations):
observation_indices[observation].append(i)

# update emission probabilities by summing the
# probabilities for each state-observation pair
for state in states_to_update:
total = 0
for obs, indices in observation_indices.items():
count = self._emissions|[state][obs] = sum(
emission_probs]i][state] for i in indices)
total += count

# normalize counts into probabilities
if total:
for obs in observation_indices:
self._emissions[state][obs] /= total

def _backward(self, observations):
# initialize the trellis
probs = ddict(lambda: ddict(lambda: 0.0))

# all states have equal probability of the final state
for state in self._states:
probs[len(observations) - 1][state] = 1.0

# update the trellis for each observation
for i in xrange(len(observations) - 2, -1, -1):
for state in self._states:

# sum the probabilities of transitioning to

# the current state and emitting the current

# observation from any of the previous states

probsJi][state] = sum(
probs[i + 1][next_state] *
self._transitions[state][next_state] *
self._emissions[next_state][observations[i + 1]]
for next_state in self._states)

# sum the probabilities of transitioning from the start
# state to any of the paths in the trellis
probs[0][self.INITIAL] = sum(
probs[0][state] *
self._transitions[self.INITIAL][state] *
self._emissions[state][observations[0]]
for state in self._states)
return probs

Given reasonable data and a good set of initial transitiaheanis-
sion probabilities, running the forward-backward tragigorithm
should generally improve the performance of the originatleio
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Sentiment analysis

6.4

6.5

As a generalization of the previous homework, implememd&isner's HMM
tagging homework available from his webpage. His homewockides a cor-
pus of weather and ice-cream observations, a corpus of ¢fngért-of-speech
tags, and a very hand spreadsheet with exact numbers fasrtivarfi-backward
algorithm that you can compare against.

Jason Eisner’s handout for this homework is quite deta#ed,care-
fully walks through the implementation of Viterbi, a smoettbigram
model, and the forward-backward algorithm. The handout giges
expected results at a number of points during the procedsasgau
can check that your code is producing the correct numbers.

Train a MaxEnt classifier to decide if a movie review is a pesiteview (the
critic liked the movie) or a negative review. Your task is &ke the text of a
movie review as input, and produce as output either 1 (pe$itr O (negative).
You don’t need to implement the classifier itself, you can fladous MaxEnt
classifiers on the Web. You'll need training and test setsamfuchents from
a labeled corpus (which you can get by scraping any web-bassit review
site), and a set of useful features. For features, the ssnihlmg is just to create
a binary feature for the 2500 most frequent words in youningj set, indicating
if the word was present in the document or not.

Determining the polarity of a movie review is a kind s#ntiment analysis
task. For pointers to the rapidly growing body of work on agtion of sen-
timent, opinions, and subjectivity see the collected papeiQu et al. (2005),
and individual papers like Wiebe (2000), Pang et al. (2002)ney (2002), Tur-
ney and Littman (2003), Wiebe and Mihalcea (2006), Thomas.€2006) and
Wilson et al. (2006).

There are basically three steps to this exercise:

1. Collect movie reviews from the web. This will require ith

using one of the standard corpora, e.g.,
www.cs.cornell.edu/People/pabo/movie-review-data/

or finding an appropriate site, doing a simple web crawl ofrthe

pages, and parsing enough of the HTML to extract the ratings

and some text for each page.

2. Extract all words from the collection, count them, anesethe
top 2500. For each movie review, generate a classification in
stance with a label of 0 (negative review) or 1 (positive eawi
and with one binary feature for each of the 2500 words.

3. Train a MaxEnt classifier on the training portion of thesslé-
cation instances, and test it on the testing portion.

Additional exploration of the problem might involve doingrse error
analysis of the classifier, and including some featuresgbdteyond
a simple bag-of-words.



Chapter 7
Phonetics

7.1 Find the mistakes in the ARPAbet transcriptions of the feiltg words:

Word Original Corrected
a. “three” [dhri] [thriy]
b. “sing” [sihng] [sih ng]
c. “eyes” [ay s] [ay 2]
d. “study” [stuhdi] [stahdiy]
e. “though” [th ow] [dh ow]
f. “planning” [plaanihng] [plae nihng]
g. “slight” [sliyt] [slayt]

7.2 Translate the pronunciations of the following color wordsn the IPA into the
ARPAbet (and make a note if you think you pronounce them difily than

7.3

7.4

this!):

IPA ARPAbet
a. [red] [rehd]
b. [blu] [b1uw]
C. [grin] [griyn]
d. [jelouv] [yehlow]
e. [blek] [blaek]
f. [wart] [wayt]
g. ['ormd3] [aorixnjh]
h. [pspll [perpel]
i. [pjus] [pyuws]
j. [tovp]  [towp]

Ira Gershwin’s lyric forLet's Call the Whole Thing Offlks about two pronun-
ciations (each) of the words “tomato”, “potato”, and “eithelranscribe into the
ARPADbet both pronunciations of each of these three words.

“tomato” [tax m ey dx ow] [tax m aa dx ow]
(or alternatively) taxmeytow] [taxmaatow]

“potato” [paxtey dxow] [paxtaadxow]

(or alternatively) [paxteytow] [paxtaatow]

“either” [iy dh axr] [ay dh axr]
Transcribe the following words in the ARPAbet:

1. dark [daark]

2. suit  [suwt]

3. greasy [griysiy]

4. wash [waa sh]

5. water [w aa dx axr]
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7.5 Take a wavefile of your choice. Some examples are on the tekthvebsite.
Download the Praat software, and use it to transcribe theefiles at the word
level and into ARPAbet phones, using Praat to help you plaggs of each
wavefile and to look at the wavefile and the spectrogram.

From the textbook website:
2001B_0049a.wav
yeah but there’s really no written rule
iyae buh dehrsh rihliy now rihtn ruwl
2005A_0046.wav
I truly wish that if something like
ay truwliy wihsh dhiht ihf sahmthihng layk

that were to happen then my children
dhae wer dxax haepn dhax may chihldrn

would do  something like
wax duw sahmthihng lay
radionews.wav
police also say Levy's blood alcohol
paxlihs aalsax sey liyviyz blahd aelkaxhaa

level was twice the legal Ilimit
lehvl waxz tways dhax liygl lihmiht

7.6 Record yourself saying five of the English vowels: [aa], [dBE], [iy], [uw].
Find F1 and F2 for each of your vowels.

These vowels typicaly have formants something like:

Vowel F1 F2

[ad 700 1150

[eH 550 1750

[ad 700 1650

[iy] 300 2300

[uw] 300 850
Individual variation is quite large, and seeing even a défee of 100
Hz or more is not unreasonable. However, the ordering of &os
should be relatively stable, e.g., F1 for [aa] and [ae] sthtwel higher
than that of [eh] which should be higher than that of [iy] aodT].




Chapter 8 |
Speech Synthesis

8.1 Implement the text normalization routine that deals with NEY, that is, map-
ping strings of dollar amounts likg45, $320, and$4100to words (either writing
code directly or designing an FST). If there are multiple sv&y pronounce a
number you may pick your favorite way.

def expand_money(money_string):
# strip off the dollar sign and commas
number = int(re.sub(r'[,$]', ”, money_string))

# generate a number followed by ’'dollars’
words = expand_number(number)
words.append(’'dollars’)

return words

def expand_number(number):
words = []

# break off chunks for trillions, millions, ... hundreds
for divisor, word in _chunk_pairs:
chunk, number = divmod(number, divisor)
if chunk:
words.extend(expand_number(chunk))
words.append(word)

# use a table for single digits and irregulars
if number and number in _numbers:
words.append(_numbers[number])

# otherwise, split into tens and ones

elif number:
tens, ones = divmod(number, 10)
words.append(_numbers[tens * 10])

words.append(_numbers[ones])

# return the words, or 'zero’ if no words were found
return words or [_numbers[0]]

_chunk_pairs = [
(1000000000000, ‘trillion’), (1000000000, ’billion’),

(1000000, ’'million’), (1000, ’'thousand’), (100, ’'hundred ]
_numbers = {
0: ’'zero’, 1: 'one’, 2: 'two’, 3: 'three’, 4: 'four’,

5: 'five’, 6: 'six, 7: 'seven’, 8: ’eight’, 9: ’nine’,
10: 'ten’, 11: ’eleven’, 12: 'twelve’, 13: ’thirteen’,
14: ‘fourteen’, 15: ‘fifteen’, 16: ’'sixteen’,

17: 'seventeen’, 18: 'eighteen’, 19: ’nineteen’,

20: 'twenty’, 30: 'thirty’, 40: 'forty’, 50: ‘fifty’,
60: ’'sixty’, 70: 'seventy’, 80: 'eighty’, 90: 'ninety’}
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8.2 Implement the text normalization routine that deals withB\LT that is, seven-
digit phone numbers lik855-1212555-1300and so on. Use a combination of
the paired andtrailing unit methods of pronunciation for the last four digits.
(Again, either write code or design an FST).

def expand_telephone(number_string):
# clean the string, then convert all but the last four digits
number_string = re.sub(r'[-()\s]’, ”, number_string)
words = [ phone_digits[int(d)] for d in number_string[:-4 1
last4 = number_string[-4:]

# convert zeros individually and all else pairwise
if last4 == '0000":

words.extend([_phone_digits[0]] * 4)
else:

words.extend(expand_pairwise(last4))
return words

def expand_pairwise(four_digits):
# convert thousands as a single number
words = []
if four_digits[-3:-1] == '00"
words.extend(expand_number(int(four_digits)))

# otherwise, convert the digits in pairs

# (using ’hundred’ for a final 00)

else:
pairl = int(four_digits[:-2])
pair2 = int(four_digits[-2:])
words.extend(expand_number(pairl))
word = expand_number(pair2) if pair2 else [hundred’]
words.extend(word)

return words

_phone_digits = {
0: 'oh’, 1: 'one’, 2: 'two’, 3: 'three’, 4: ‘four’,
5: ‘five’, 6: 'six’, 7: 'seven’, 8: 'eight’, 9: 'nine’}

8.3 Implementthe text normalization routine that deals wifety)NDATE in Fig. 8.4.

def expand_date(date_string):
# split date into days, months and years
date_parts = re.split(r'[/-]', date_string)
date_parts = [int(part) for part in date_parts]
date_parts.extend([None] * (3 - len(date_parts)))
day, month, year = date_parts

# swap day and month if necessary (NOTE: this may miss
# some swaps when both month and day are less than 12)
if month > 12 >= day:

day, month = month, day

# add digits to year if necessary

if year is not None and year < 100:
this_year = datetime.datetime.today().year
year += this_year / 100 * 100

# years too far in the future are probably
# in the past, e.g., 89 probably means 1989
if year > this_year + 10:

year -= 100

# expand months, day and year

words = [_months[month - 1]]

words.extend(to_ordinal(expand_number(day)))

if year is not None:
words.extend(expand_pairwise(str(year)))

return words
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def to_ordinal(number_words):
# convert the last word to an ordinal
last_word = number_words[-1]

# use a table for irregulars
if last_word in _ordinals:
ordinal = _ordinals[last_word]

# otherwise, add 'th’ (changing 'y’ to ' if necessary)
elif last_word.endswith(’y’):

ordinal = last_word[:-1] + ‘ieth’
else:

ordinal = last_word + 'th’

# add the ordinal back to the rest of the words
return number_words[:-1] + [ordinal]

_ordinals = dict(

one='first’, two="second’, three="third’,

five='fifth’, eight="eighth’, nine="ninth’, twelve="tw elfth’)
_months = [

‘january’, ‘february’, 'march’, 'april’,

‘may’, ‘june’, ’july’, 'august’,

'september’, 'october’, 'november’, 'december’]

8.4 Implementthe text normalization routine that deals withetiNTIME in Fig. 8.4.

def expand_time(time_string):
# split time into hours and minutes
time_parts = re.split(r'[.:]", time_string)
hours, minutes = [int(part) for part in time_parts]

# if minutes == 00, add "o’clock"

words = expand_number(hours)

if not minutes:
words.append("o’clock")

# otherwise, expand the minutes as well, adding the
# 'oh’ for '01’ through '09’
else:
if minutes < 10:
words.append('oh’)
words.extend(expand_number(minutes))
return words

8.5 (Suggested by Alan Black.) Download the free Festival spsgnthesizer. Aug-
ment the lexicon to correctly pronounce the names of everymgour class.

Lexicon entries for Festival look something like:
("photography” n (

(f@ 0

(tog 1

(r@ f) 0)

((ii) 0)))
This says that when the wophotographyis encountered and it is a
noun, it is pronounced g6 'tag rof i].

The most important sections of the Festival documentatien a
probably the “Lexicons” chapter, which explains the lexicentry
format, and the “US phoneset” and “UK phoneset” sectiondhat t
end of the documentation, which explain the transcriptionisols.
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8.6 Download the Festival synthesizer. Using your own voiceprd and train a
diphone synthesizer.
If the recording is done in a language for which Festivaladsehas
a phoneset and lexicon, e.g., English, then this exercipénes only
three major steps:
e Speaking and recording a long list of diphones
e Automatically aligning and labeling the diphone segments
e Testing the model and hand-correcting the diphone labgling

The Festival documentation walks through each of theses stege-
tail, and shows the Festival commands that must be run atsagh.

8.7 Build a phrase boundary predictor. You can use any clasgifiedike, and you
should implement some of the features described on page 263.
Good baselines to compare the models against:
e Boundaries after all punctuation
e Boundaries before function words preceded by content words

To get the best picture of model performance, models shaiklhl-
uated using precision and recall rather than simple acgurac



Chapter 9 N
Automatic Speech Recognition

9.1 Analyze each of the errors in the incorrectly recognizeddcaiption of “um the
phone is | left the...” on page 328. For each one, give your hesss as to
whether you think it is caused by a problem in signal proceggironunciation
modeling, lexicon size, language model, or pruning in theodeg search.

There are many possible explanations for each of the erifottseo
system. This exercise is just intended to get studentsitigrdbout

the different components of an ASR system, and how theydnter
The following are a few possible explanations for the systerars.

iUM - iGOTITTO

Assigning a cause to this error was unintentionally triclecduse
the alignment program dropped all word fragments in its outf$o

the input probably looked more likB- T- UM, or something similar.
Given such input, both the lexicon and language model wordbg

bly try to turn these partial words into full words, produgi@OT IT

TOinstead olUM.

PHONE IS — FULLEST

LEFT THE — LOVE TO

PHONE — FORM

UPSTAIRS — OF STORES

For all of these errors, the two phrases are similar phoslgtjie.g.,
[lehfth ax] and [lah ftax]. On the one hand, this could sugges
that the acoustic model correctly identified them as beimgjar, and
the problem was in the language model, e.g., having seewéiti’
more than “i left the” during training. On the other handsthbuld
suggest that the problem is that the acoustic model didfficgntly
distinguish between the two phrases phonetically.

Particularly in the case of the language model, the compiognd
of other errors could also be at fault. For example, given tha
model has already made the err@QOT IT TQ the phraselO the
FULLESTiIs probably much more likely in the language model than
TO the PHONE IS
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9.2 In practice, as we mentioned earlier in Chapter 4, speeauynézers do all their
probability computation by using tHeg probability (logprob) rather than ac-
tual probabilities. This helps avoid underflow for very shmabbabilities, but
also makes the Viterbi algorithm very efficient since alllpability multiplica-
tions can be implemented by adding logprobs. Rewrite thagmsmode for the
Viterbi algorithm in Fig. 9.26 on page 321 to make use of laigsrinstead of
probabilities.

function VITERBI(observation®f len T, state-graplof len N) returns best-path
;; initialize the probability and backpointer matrices
create a path log-probability matnisterbi[N+2,T]
for each state from 1to N do
viterbi[s,1] < log(ao,s) + log(bs(o1))
backpointefs,1] 0
;; fill in the matrices from left to right
for each time stepfrom 2to T do
for each state from 1to N do

viterbi[s,t]<—m§x viterbi[s',t — 1] + log(a. ) + log(bs(ot))
s'=1
backpointefs,{] < arghax viterbils',t — 1] + log(a.s.,)

s'=1
;; select the best final state
. . N . .
viterbi[gr, T < max viterbi[s,T] + log(as,qp)
s=1

backpointefqr,T] — argr’\I‘lax viterbi[s, T + log(as,qp)
s=1

return ...

9.3 Now maodify the Viterbi algorithm in Fig. 9.26 to implementettbeam search
described on page 323. Hint: You will probably need to addddecto check
whether a given state is at the end of a word or not.

function VITERBI(observation®f len T, state-graphof len N, 6) returns best-path

;; fillin the matrices from left to right
for each time stepfrom 2to T do
for each state fronw 1toNdo
viterbi[s,t] < max viterbi[s',¢ — 1] + log(a. ;) + log(bs(o:))
s'=1
backpointefs,t] <—argr’\lllax viterbi[s', ¢ — 1] + log(a. )
s'=1
;; prune any word-final states that are outside of the beam
best-prob— mhix viterbils, t]
s=1
for each state where s is at the end of a wordo

if viterbi[s,t] + 6 < best-probthen
Prune viterbi[s, t]

:; select the best final state ...
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9.4 Finally, modify the Viterbi algorithm in Fig. 9.26 with mordetailed pseudocode
implementing the array of backtrace pointers.

function VITERBI(observation®f len T, state-graplof len N, 0) returns best-path

create an arraigest-patfiT]

s < backpointefgr, T

for each time stepfrom T to 1 do
best-patft] «— s
s « backpointefs,t]

return best-path

9.5 Using the tutorials available as part of a publicly avaidat#cognizer like HTK
or Sonic, build a digit recognizer.
This exercise consists of the following steps:
1. Record each digit several times
2. Label the recordings with silence and digit segments
3. Convert the waveforms to acoustical vectors
4. Train the recognizer on the vectors and their labels
5. Record some new digits and test the model
Manually creating the dataset is likely to be the most timaeseconing
part of this exercise. Most publicly available recognizectude tools
for doing the other steps automatically.

9.6 Take the digit recognizer above and dump the phone liketisdor a sentence.
Show that your implementation of the Viterbi algorithm cacsessfully decode
these likelihoods.

The goal of this exercise is to convert the pseudocode deedln
Exercises 9.2, 9.3 and 9.4, and apply it to an actual problésmg
logprobs, in particular, will be crucial for this task sinttee many
small probabilities would quickly run into numeric undevilssues.
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Speech Recognition:
Advanced Topics

10.1 Implementthe Stack decoding algorithm of Fig. 10.7 on patfe ick a simple
h* function like an estimate of the number of words remaininthinsentence.

To simplify this assignment a bit, skip the fast matchingtpahose
interested in trying the fast-match technique should sgeaatrish-
nan and Bahl (1996).

10.2 Modify the forward algorithm of Fig. 9.23 on page 319 to usetitee-structured
lexicon of Fig. 10.10 on page 345.

Sor more information on the implementation of tree-strrexiuexi-
cons, see Chapter 13 of Huang et al. (2001).
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Chapter 11
Computational Phonology

11.1 Build an automaton for rule (11.3).
The symbol “[-voice]” means a voiced sound (potentiallygwoing
anything) and the symbol “other” means any sound not usedtar o
arcs leaving the same state (also potentially producinthamy).

[-voice]

[-voice]

[-voice]

Canadianraising  11.2 Some Canadian dialects of English exhiBinadian raising: /ai/ is raised to
[a1] and /au/ to [au] in stressed position before a voiceless consonant (Brom-
berger and Halle, 1989). A simplified rule dealing only wjth/ can be stated
as:

C
Jai/ — [a1] [ — [ —voz’ce} (11.2)
In some Canadian dialects this rule interacts with the flagppille, causing dif-
ferent pronunciations for the wordgler ([raira]) andwriter ([raica]). Write a

two-level rule and an automaton for the raising and flappuigsrthat correctly

models this distinction, making simplifying assumptiosi@eded.
When applying the Canadian raising rule, we must look focelass
consonants at the lexical level, not the surface level. Qtise, the
rule would not apply tavriter which has the lexical fornfrarte:/ but
the surface fornfiraira]. Thus, our two-level rules should look like:

o [C ]
ar A1 :

—voice

t:dxe V__V

The automaton for the raising rule then looks like:
other

[C -voice]:
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And the automaton for the flapping rule looks like:
other

11.3 Write the lexical entry for the pronunciation of the Engljsdist tense (preterite)
suffix -d, and the two-level rules that express the difference inriggpnciation
depending on the previous context. Don’t worry about thdlisgerules. Make

sure you correctly handle the pronunciation of the pasttz$ the wordsadd,
pat, bake andbag

The suffix-d is pronounced afd] when following an alveolar stop
like [t] or [d] (e.g.,added patted, as[t] when following voiceless
sounds (e.gbaked, and agd] when following voiced sounds (e.g.,
bagged.

To allow the rules to run in parallel, we can give them mutuall
exclusive conditions, and look for these only at the lexiead!:

d:id < [+alveolar-stop " #
At o [—al\{eolar-stop} S
—Voice
—alveolar-stop| .
¢ = [Jrvoice } —

11.4 Write two-level rules for the Yawelmani Yokuts Harmony, Sieming, and Low-
ering phenomena from page 365. Make sure your rules can narailel.
The key here is to make sure that the Harmony rule only lookiseat

lexical context, so that changes to the surface forms fraarSthort-
ening and Lowering rules do not affect it.

+a high
[+a high]:[iﬁrboauc:d] o | +8back | c*ror
7 -+~ round
thighl . .
L_logg]:[—hlgh] &

[+long: [—long] & _C
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12.1 Draw tree structures for the following ATIS phrases:

The trees below use, as much as possible, the rules from épgesh
Other tree structures are also possible.

1. Dallas
NP
|
ProperNoun
|

Dallas

2. from Denver
PP

Prep NP
|
from ProperNoun
|
Denver
3. after five p.m.
PP

Prep NP
|
after Card Nom
| |
five Noun

p.m.

4. arriving in Washington
GerundVP

GerundV PP
arriving Prep NP

in  ProperNoun
|
Washington

5. early flights
NP
PN
A|P Nom
Adj Noun
|
early flights

44
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6. all redeye flights
NP
/\
Quant Nom
|
all Nom Noun

Noun flights
|

redeye

7. on Thursday
PP
/\
Prep NP
| |
on ProperNoun
|
Thursday

8. a one-way fare
NP
/’\
Det AP Nom
| | |
a Adj  Noun

one-way fare

9. any delays in Denver
NP
/\
Quant Nom
| /\
any Nc|)m PP
Nc|)un Prep N|P
|
delays in ProperNoun
|

Denver
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12.2 Draw tree structures for the following ATIS sentences:

The trees below use, as much as possible, the rules from #pgerh
Other tree structures are also possible.

1. Does American airlines have a flight between five a.m. and.gn.?

S
T T —
Aux NP VP
Does ProperNoun Verb NP
American airlines have Det Nom
/\
a Nom PP
/\
Noun Prep NP
| | T~
flight between NP and NP
PN
Card Nom Card Nom
| | | |
five Noun six Noun
|
a.m. a.m.

2. 1 would like to fly on American airlines.
S
/\
NP VP
| /\
Pro Verb VP
L T
I would Verb VP
Il T
like Inf Verb PP
to fly Prep NP
| |
on ProperNoun
|

American airlines

3. Please repeat that.
S
|
VP
/R
A?v Vei*rb N|P

Pleaserepeat Pro

that
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4. Does American 487 have a first-class section?
S
e T —
Al|JX N|P VP
/\
Does ProperNoun Vei*rb NP
| T

American 487 have Det A|P Nom
a Adj Noun
|

first-class section

5. I need to fly between Philadelphia and Atlanta.

S
/\
N|P VP
/\
P|r0 Ve|rb VP
T T
| need Ir|1f Vei*rb PP
/\
to fly Prep NP
/]\
bet\lveen N|P and N|P
ProperNoun ProperNoun
Phila(ljelphia Atlelmta

6. What is the fare from Atlanta to Denver?

S
/\
N|P VP
/\
P|r0 Ve|rb NP
/\
what is Det Nom
/\
the Nom PP
/\
Nom PP Prep NP
| N | |
Noun Prep N|P to ProperNoun
| |
fare from ProperNoun Denver

|
Atlanta
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7. Is there an American airlines flight from Philadelphia tallBs?

S
|
VP
e T
Ve|rb E|x NP
’—///\
Is there Det Nom
/\
an Nom PP
/\ /\
Nom PP Prep NP
Nom Noun Prep to ProperNoun
NP flight from NP Dallas
| |
ProperNoun ProperNoun
| |
American airlines Philadelphia

12.3 Augmentthe grammar rules on page 399 to handle pronounspBxgzerly with

person and case.

S — 3sgAux 3sgNomNP VP

S — Non3sgAux Non3sgNomNP VP
3sgAux — does| has|can| ...

Non3sgAux — do| have|can] ...

3sgNomNP — 3sgNomPronoun

3sgNomNP — Det SgNominal
3sgNomPronoun  — he| she| it

Non3sgNomNP — Non3sgNomPronoun
Non3sgNomNP — Det PINominal
Non3sgNomPronoun— | | you| we| they

VP — Verb (AccNP) (PP)

AccNP — AccPronoun

AccNP — Det Nominal

AccPronoun — me| us|you| him| her| it | them

12.4 Modify the noun phrase grammar of Sections 12.3.3-12.3cbtrectly model

mass nouns and their agreement properties
3sgNP — SgCountNR MassNP

SgCountNP — SgCountDet SgCountNominal
SgCountDet — a|one|the|any] ...
SgCountNominal— flight| pilot | ...

MassNP — (MassDet) MassNominal
MassDet — some| the| any| ...
MassNominal — snow| breakfast ...
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125

12.6

12.7

12.8

How many types oNPs would the rule on page 396 expand to if we didn’t allow
parentheses in our grammar formalism?

Since there is a binary decision of whether or not to incluatcheof
the five optionsDet, Card, Ord, QuantandAP), we would need

2% = 32

rules to express the grammar without a way of denoting optityn

Assume a grammar that has mawvi rules for different subcategorizations,
as expressed in Section 12.3.5, and differently subcatgbrerb rules like
Verb-with-NP-complemenitiow would the rule for postnominal relative clauses
(12.5) need to be modified if we wanted to deal properly withregles likethe
earliest flight that you havg Recall that in such examples the prondhat is
the object of the verlget Your rules should allow this noun phrase but should
correctly rule out the ungrammatical*l get

RelClause— (who| that) VP

RelClause— (who| that) NoObjS

NoObjS — NP NoObjvP

NoObjVP — (Aux) Verb-with-NP-Comp (PP)

NoObjVP — (Aux) Verb-with-S-Comp (NoObjS)

NoObjVP — (Aux) Verb-with-Inf-VP-Comp ((NP) to NoObjVP)

Does your solution to the previous problem correctly motdelXPthe earliest
flight that | can ge? How abouthe earliest flight that | think my mother wants
me to book for hé? Hint: this phenomenonis callémhg-distance dependency

Yes, the optionahuxelements allow for auxiliaries likean and the
recursive uses dfloObjSandNoObjVPin the last two rules allow for
the long-distance dependencies.

Write rules expressing the verbal subcategory of Englistiliates; for exam-
ple, you might have a ruleerb-with-bare-stem-VP-complementcan

For the sake of conciseness, we list only one form per verbfdou
exampleam are, wasfollow the same pattern as.

verb-with-bare-stem-VP-complement do | can| could| may|
might | must | shall |
should| will | would
verb-with-gerund-VP-complement — is
verb-with-perfect-VP-complement — has|is
verb-with-infinitive-VP-complement— ought
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possessive  12.9 NPs like Fortune’s officeor my uncle’s markare calledoossessiv@r genitive
Genitive noun phrases. We can be model possessive noun phrasestimgttea sub-NP
like Fortune’sor my uncle’sas a determiner of the following head noun. Write
grammar rules for English possessives. You may teeas if it were a separate
word (i.e., as if there were always a space bef®yre

NP — (Det) Nominal
NP — ProperNoun
Det — NP'’s

Det — my|a|the]...

12.10 Page 393 discussed the need faWh-NPconstituent. The simple$¥h-NPis
one of thewh-pronoungwho, whom, whose, whighThe Wh-wordsvhatand
whichcan be determinersvhich four will you havewhat credit do you have
with the DukeAWVrite rules for the different types ah-NPs.

Wh-NP — Wh-Pro

Wh-NP — Wh-Det Nominal

Wh-Pro — who| whom| whose| which
Wh-Det — what| which

12.11 Write an algorithm for converting an arbitrary contextefigrammar into Chom-
sky normal form.

function CHOMSKY-NORMAL-FORM(grammaj) returns grammar

; remove epsilon rules
while grammarhas aruleA — ¢ where A is not the start statdo
Remove the ruled — ¢
for eachruleB — (o...B3:;AB;...0n do
Replace the rule wittlB — (o ...3:3; ... 0~
; remove single symbol nonterminal rules
while grammarhas aruleA — B where B is a nonterminatio
Remove the ruled — B
for eachruleB — fy...0[n do
AddtheruleAd — Go...0N
if B is not the start symbalo
if noruleC — ~ B¢ existsdo
Remove all rule3 — C

; move terminals to their own rules
for eachruleA — [of1 ... BN in grammarwhere N > 1do
for eachB; where 3; is a terminaldo
Create a new symbdB
Add aruleB — (3; togrammar
Replaces; in the original rule withB
; ensure there are only two nonterminals per rule
while grammarhas aruleA — fBo...08n—208n—108~ Where N > 2do
Create a hew symbdB
Add aruleB — Bny_18n
Replace the original rule with — (o ...0n—2B

return grammar



Chapter 13
Syntactic Parsing

13.1 Implement the algorithm to convert arbitrary context-fggammars to CNF.

def chomsky_normal_form(grammar):
grammar = set(grammar)
nonterminals = set(rule.head for rule in grammar)

# remove single symbol nonterminal rules
for rule, symbol in _unary_rules(grammar, nonterminals):
grammar.discard(rule)
for rule2 in _rules_headed_by(grammar, symbol):
grammar.add(Rule(rule.head, tuple(rule2.symbols)))
if all(symbol not in rule.symbols for rule in grammar):
for rule2 in _rules_headed_by(grammar, symbol):
grammar.discard(rule2)

# move terminals to their own rules
for rule in list(grammar):
if len(rule.symbols) >= 2:
for i, symbol in enumerate(rule.symbols):
if all(rule.head != symbol for rule in grammar):
rule = _new_symbol(grammar, rule, i, i + 1)

# ensure there are only two nonterminals per rule
for rule in _multi_symbol_rules(grammar):
_new_symbol(grammar, rule, 0, 2)

# return the grammar in CNF
return grammar

# find A -> B rules, allowing concurrent modifications
def _unary_rules(grammar, nonterminals):
while True:
g = ((rule, rule.symbols[0])
for rule in grammar
if len(rule.symbols) ==
if rule.symbols[0] in nonterminals)
yield g.next()

# find all rules headed by the given symbol
def _rules_headed_by(grammar, symbol):
return [rule for rule in grammar if rule.head == symbol]

# create a new symbol which derives the given span of symbols
def _new_symbol(grammar, rule, start, stop):
symbols = rule.symbols
new_head = ’_’.join(symbols[start:stop]).upper()
new_symbols = symbols[:start] + (new_head,) + symbols[sto p:]
new_rule = Rule(rule.head, new_symbols)
grammar.discard(rule)
grammar.add(new_rule)
grammar.add(Rule(new_head, symbols[start:stop]))
return new_rule

# find A -> BCD... rules, allowing concurrent modifications
def _multi_symbol_rules(grammar):
while True:
g = (rule for rule in grammar if len(rule.symbols) >= 3)
yield g.next()
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Apply your program to th&; grammatr.

# representation of a rule A -> B...C
class Rule(object):
def __init_ (self, head, symbols):
self.head = head
self.symbols = symbols
self._key = head, symbols
def __eq__ (self, other):
return self._key == other._key
def __hash__(self):
return hash(self._key)

# build a grammar from a string of lines like "X -> YZ | b"
def get_grammar(string):
grammar = set()
for line in string.splitlines():
head, symbols_str = line.split(" -> )
for symbols_str in symbols_str.split(" | ’):
symbols = tuple(symbols_str.split())
grammar.add(Rule(head, symbols))
return grammar

grammar = get_grammar(”’\

S -> NP VP | Aux NP VP | VP

NP -> Pronoun | Proper-Noun | Det Nominal
Nominal -> Noun | Nominal Noun | Nominal PP
VP -> Verb | Verb NP | Verb NP PP | Verb PP | VP PP
PP -> Preposition NP

Det -> that | this | a

Noun -> book | flight | meal | money

Verb -> book | include | prefer

Pronoun -> | | she | me

Proper-Noun -> Houston | TWA

Aux -> does

Preposition -> from | to | on | near | through™)

grammar_cnf = chomsky_normal_form(grammar)
assert grammar_cnf == get_grammar("’\

S -> NP VP | AUX_NP VP | Verb NP | VERB_NP PP | Verb PP | VP PP
S -> book | include | prefer

AUX_NP -> Aux NP

NP -> Det Nominal

NP -> TWA | Houston | | | she | me

Nominal -> Nominal Noun | Nominal PP

Nominal -> book | flight | meal | money

VP -> Verb NP | VERB_NP PP | Verb PP | VP PP
VP -> book | include | prefer

VERB_NP -> Verb NP

PP -> Preposition NP

Det -> this | that | a

Noun -> book | flight | meal | money

Verb -> book | include | prefer

Aux -> does

Preposition -> from | to | on | near | through™)

13.2 Implement the CKY algorithm and test it with your converigdgrammar.
import collections

def cky_table(grammar, words):
table = collections.defaultdict(set)
for col, word in enumerate(words):
col += 1

# find all rules for the current word
for rule in grammar:
if rule.symbols == (word,):
table[col - 1, col].add(rule.head)
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# for each span of words ending at the current word,
# find all splits that could have formed that span
for row in xrange(col - 2, -1, -1):

for mid in xrange(row + 1, col):

# if the two constituents identified by this
# split can be combined, add the combination
# to the table
for rule in grammar:
if len(rule.symbols) == 2:
syml, sym2 = rule.symbols
if syml in table[row, mid]:
if sym2 in table[mid, col]:
table[row, col].add(rule.head)
return table

words = ’'book a flight through Houston'.split()
table = cky_table(grammar_cnf, words)

assert table[0, == set('S VP Verb Nominal Noun’.split())
assert table[0, == set()

assert table[0, == set('S VP VERB_NP'.split())

assert table[0, == set()

assert table[0,
assert table[1,
assert table[1,
assert table[1,
assert table[1,
assert table[2,
assert table[2,
assert table[2,
assert table[3,
assert table[3,
assert table[4,

== set('S VP VERB_NP".split())
== set('Det’.split())

== set('NP".split())

set()

== set('NP’.split())

== set('Nominal Noun’.split())
== set()

== set('Nominal’.split())

== set('Preposition’.split())
== set('PP’.split())

== set('NP’.split())

A DA BRWADNCNGDCN R
1
il

13.3 Rewrite the CKY algorithm given in Fig. 13.10 on page 440 s thcan accept
grammars that contain unit productions.

Solving this problem requires that each time we add a syntbal t
cell in the table, we also add all symbols to that cell whichlddhave
produced the original symbol through a sequence of unaegrigo,
for example, if we add” to tabl€[:, j], and we have the ruled — B
andB — C, then we must also add and B to tabld, j].

13.4 Augment the Earley algorithm of Fig. 13.13 to enable pamedito be retrieved
from the chart by modifying the pseudocode fooi@PLETER as described on
page 448.

Basically, we add a list of backpointers to each of our statéken
the dot in a rule is advanced, the state that allowed thatremvs
appended to the list of backpointers.

procedure COMPLETERS; =(B — v e, [j,k], Sn ... Sm))
foreach(A — a e B3,[i, j], Sp... Sq) in char{j] do
ENQUEUE(A — a B e 3,[i, k], Sp ... S¢Sz), char{k])
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13.5 Implement the Earley algorithm as augmented in the preweaascise. Check it
on a test sentence by using the grammar.

def earley_parse(grammar, words):
nonterminals = set(rule.head for rule in grammar)

# never allow states already seen to be added to the chart
chart = collections.defaultdict(list)
seen = collections.defaultdict(set)
def add(i, rule, dot, start, end, pointers=()):
state = State(rule, dot, start, end, pointers)
if state not in seenli]:
chart[i].append(state)
seen([i].add(state)

# iteratively build the chart
add(0, Rule(START’, ('S'))), 0, 0, 0)
for i in xrange(len(words) + 1):
for state in chart[i]:
complete = state.is_complete()
next_symbol = state.next_symbol()

# Scanner - the state is expecting a word, so if the
# expected word is next in the input, advance the
# rule past the word
if not complete and next_symbol not in nonterminals:
if state.end < len(words):
if next_symbol == words[state.end]:
add(state.end + 1, state.rule,
state.dot + 1, state.start,
state.end + 1, state.pointers)

# Predictor - the state is expecting a constituent C,
# so add new states for all expansions of C, starting
# at the end of the current state
elif not complete and next_symbol in nonterminals:
for rule in grammar:
if rule.head == next_symbol:
add(state.end, rule, O,
state.end, state.end)

# Completer - the state is complete, advance any
# states that were expecting a state like this (both
# the symbol and the location)

else:
for other in chart[state.start]:
if other.next_symbol() == state.rule.head:
if other.end == state.start:

add(state.end, other.rule,
other.dot + 1,
other.start, state.end,
other.pointers + (state,))

# helper for creating tree strings from states
def to_tree(state):
children = [to_tree(child) for child in state.pointers]
if not children:
children = state.rule.symbols
return '(%s %s)’ % (state.rule.head, ' ’.join(children))

# generate all trees from the START rules
for state in chart[i]:
if state.rule.head == 'START’ and state.is_complete():
top, = state.pointers
yield to_tree(top)
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# state class encapsulating rule position, word span and
# pointers for retrieving full parse
class State(object):
def __init_ (self, rule, dot, start, end, pointers=()):
self.rule = rule
self.dot = dot
self.start = start
self.end = end
self.pointers = pointers
self._key = rule, dot, start, end, pointers
def __hash__(self):
return hash(self._key)
def __eq__ (self, other):

return self._key == other._key
def is_complete(self):
return self.dot == len(self.rule.symbols)

def next_symbol(self):
if self.is_complete():
return None
else:
return self.rule.symbols[self.dot]

grammar = get_grammar(”’\

S -> NP VP | Aux NP VP | VP

NP -> Pronoun | Proper-Noun | Det Nominal
Nominal -> Noun | Nominal Noun | Nominal PP
VP -> Verb | Verb NP | Verb NP PP | Verb PP | VP PP
PP -> Preposition NP

Det -> that | this | a

Noun -> book | flight | meal | money

Verb -> book | include | prefer

Pronoun -> | | she | me

Proper-Noun -> Houston | TWA

Aux -> does

Preposition -> from | to | on | near | through™)

words = 'book through Houston’.split()
assert set(earley_parse(grammar, words)) == set([
(S (VP (Verb book) ’
(PP (Preposition through) (NP (Proper-Noun Houston))))) ’
(S (VP (VP (Verb book)) ’
(PP (Preposition through) (NP (Proper-Noun Houston))))) i)}
13.6 Alter the Earley algorithm so that it makes better use ofdyotup information

to reduce the number of useless predictions.
One way to achieve this would be to determine for each noriteim

all possible terminals that could appear in the first positiba string
derived from that rule. For example, in tife grammar,

FIRST(PP) ={from, to, on, near, through
FIRST(V P) ={book, include, prefgr

The predictor would only insert new states for nonterminet®se
FIRST set included the current word in the string.

13.7 Attempt to recast the CKY and Earley algorithms in the clpantsing paradigm.

In the chart-parsing version of CKY, we would firstifriALIZE by
looking up words in the grammar and adding their rules to fenda.
This is basically the equivalent of filling in the table cedlong the
diagonal. We then alternate betweemikE-PREDICTIONS, which
generates parentrules from rules in the table, and tnDEMENTAL
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rule, which takes pairs of these rules and completes themagbnda
would make sure we consider rules in the same order as thdred
CKY algorithm.

In the chart-parsing version of Earley, we againTliALIZE by
adding all the part of speech rules, basically the equivalESCAN-
NER. Then MAKE-PREDICTIONSdoes what REDICTORUsed to do,
and the FNDAMENTAL rule does what GMPLETERuUSed to do. The
agenda would basically be a sequence of queues, one for eadh w
and where we process all edges for each word in the order they w
produced.

13.8 Discuss the relative advantages and disadvantages ddlpatsus full parsing.

Partial parsing is generally much faster than full parsimgt, pro-
vides less syntactic detail. Thus, for a task where only agmges
of surface level syntax are necessary, e.g., named entibgnétion,
partial parsing can provide similar results to a full parsesubstan-
tially reduced times. However, for a task where a great armofin
syntactic detail is needed, e.g., construction of logicahfs, even
cascaded partial parsers will not produce as completenrdtion as
a full parser.

13.9 Implement a more extensive finite-state grammar for nounggdy using the

examples given in Section 13.5 and test it on sdfRs. Use an on-line dictio-
nary with parts-of-speech if available; if not, build a moestricted system by
hand.

Below, we use\NN to stand folNN or NNSor NNP.
NP — (DT) (CD) JJ (VBG) NN« NN
NP — (DT) (CD) NN« NN CC NN« NN
These rules cover NPs like the following found in the Penrebank:
one Cray Computer share
an Italian state-owned holding company
the Cray-3 research and development expenses

13.10 Discuss how to augment a parser to deal with input that mayndariect, for

example, containing spelling errors or mistakes arisimgnfautomatic speech
recognition.

One approach might be to take the partial syntactic strasttirat the
parser was able to identify and join them together to forrmdatses.
These full parses would necessarily introduce new ruleshiscap-
proach would likely require searching through the spaceoskible
new rules to find a minimal set that produces a full parse.

Another approach, and perhaps the more common one, would be
to use one of the probabilistic approaches discussed int€hap.
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14.1 Implementthe CKY algorithm.

import collections

def prob_cky(grammar, words):
ddict = collections.defaultdict
probs = ddict(lambda: ddict(lambda: 0.0))
backs = ddict(lambda: {})

# helpers for getting rules that produce the given symbols
# and for getting heads of rules with probability > 0
def get_rules( * symbols):
for rule in grammar:
if rule.symbols == symbols:
yield rule
def probs_positive(row, col):
for head in probs[row, col]:
if probs[row, col][head] > 0.0:
yield head

# for each word in the input, update the table cells in the
# corresponding column, from bottom to top
for col, word in enumerate(words):

col += 1

# find rules that could have produced the word directly

for rule in get_rules(word):
probs[col - 1, col][rule.head
backs[col - 1, col][rule.head

= rule.prob
= None, None, None

# create a new span when two existing spans meet at their
# endpoints and a rule producing those two symbols exists
for row in xrange(col - 2, -1, -1):
for mid in xrange(row + 1, col):
for headl in probs_positive(row, mid):
for head2 in probs_positive(mid, col):
for rule in get_rules(headl, head2):

# combine rule and span probabilities
prob = rule.prob

prob *= probs[row, mid][headl]

prob *= probs[mid, col][head2]

# keep higher probability rules

if prob > probs[row, col][rule.head]:
probs[row, col][rule.head] = prob
back = mid, headl, head2
backs[row, col]rule.head] = back

# helper for converting the backpointers to a tree
def get_tree(row, col, symbol):
mid, headl, head2 = backs[row, col][symbol]
if mid is headl is head2 is None:
return '(%s %s)’ % (symbol, words[row])
else:
treel = get_tree(row, mid, headl)
tree2 = get_tree(mid, col, head2)
return '(%s %s %s)’ % (symbol, treel, tree2)

# return tree and expected probability
return get_tree(0, len(words), 'S’), probs[0, len(words)
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14.2 Modify the algorithm for conversion to CNF from Chapter 13ctmrrectly han-
dle rule probabilities. Make sure that the resulting CNFRgssthe same total
probability to each parse tree.

The three basic CNF transformation rules, and their comeding
probability calculations (shown in brackets following baale):

e ReplaceA — B [p;] rules withA — [y... 0N [p1 * p2] rules
foreachB — Sy ... A [p2] rule.

e Replaced — fy...B;b8;6n [p1] rules (where is a terminal)
with A — By ... 3;BB;6n [p1] andB — b [1.0] rules (whereB
is a new symbol).

e ReplaceA — Gy...08n—28n-108n [p1] rules (whereN > 2)
with A — ﬁo...ﬁN_gB [pl] andB — ﬁN—lﬁN [10] rules
(whereB is a new symbol).

14.3 Recall that Exercise 13.3 asked you to update the CKY algortb handle unit
productions directly rather than converting them to CNRelBx this change to
probabilistic CKY.

def prob_cky(grammar, words):
ddict = collections.defaultdict
probs = ddict(lambda: ddict(lambda: 0.0))
backs = ddict(lambda: {})

# helpers for getting rules that produce the given symbols
# and for getting heads of rules with probability > 0
def get_rules( * symbols):
for rule in grammar:
if rule.symbols == symbols:
yield rule
def probs_positive(row, col):
for head in probs[row, col]:
if probs[row, col][head] > 0.0:
yield head

# helper for adding heads to table cells that could have
# been generated using a chain of unary rules
def add_unaries(row, col):

# iterate over a queue with the heads from the table cell
seen = set()
heads_todo = set(probs_positive(row, col))
while heads_todo:
head = heads_todo.pop()

# add to the queue rules that could have generated
# this symbol, that were not previously seen
for rule in get_rules(head):
if rule not in seen:
seen.add(rule)
heads_todo.add(rule.head)

# combine A -> B and B -> C rules and add the
# new A -> C rule to the table
prob = rule.prob * probs[row, col][head]
if prob > probs[row, col][rule.head]:
probs[row, col][rule.head] = prob
back = None, head, None
backs[row, col][rule.head] = back

# for each word in the input, update the table cells in the
# corresponding column, from bottom to top
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for col, word in enumerate(words):
col += 1

# find rules that could have produced the word directly
for rule in get_rules(word):

probs[col - 1, col][rule.head] = rule.prob

backs[col - 1, col][rule.head] = None, None, None

# propagate any unary rules
add_unaries(col - 1, col)

# create a new span when two existing spans meet at their
# endpoints and a rule producing those two symbols exists
for row in xrange(col - 2, -1, -1):
for mid in xrange(row + 1, col):
for headl in probs_positive(row, mid):
for head2 in probs_positive(mid, col):
for rule in get_rules(headl, head2):

# combine rule and span probabilities
prob = rule.prob

prob *= probs[row, mid][headl]

prob *= probs[mid, col][head2]

# keep higher probability rules

if prob > probs[row, col][rule.head]:
probs[row, col][rule.head] = prob
back = mid, headl, head2
backs[row, col]rule.head] = back

# propagate any unary rules
add_unaries(row, col)

# helper for converting the backpointers to a tree
def get_tree(row, col, symbol):
mid, headl, head2 = backs[row, col][symbol]
if mid is headl is head2 is None:
return '(%s %s)’ % (symbol, words[row])
elif mid is head2 is None:
tree = get_tree(row, col, headl)
return '(%s %s)’ % (symbol, tree)
else:
treel = get_tree(row, mid, headl)
tree2 = get_tree(mid, col, head2)
return '(%s %s %s)’ % (symbol, treel, tree2)

# return tree and expected probability
return get_tree(0, len(words), 'S’), probs[0, len(words)



60 Chapter 14. Statistical Parsing

14.4 Fill out the rest of the probabilistic CKY chart in Fig. 14.4.

Det: .4 NP: .0024 S: 2.304e-§
[0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
N:.02
[1,2] [1, 3] [1,4] [1, 5]
V: .05 VP: 1.2e-5
[2, 3] [2,4] [2, 5]
Det: .4 NP:.0012
[3, 4] [3, 5]
N:.01
[4,5]

14.7 Implementthe PARSEVAL metrics described in Section 14 .@xti\either use a
treebank or create your own hand-checked parsed testsstudéoyour CFG (or
other) parser and grammar, parse the test set and compeatedabcall, labeled
precision, and cross-brackets.

The code below implements the PARSEVAL metrics.

from __ future__ import division
def parseval(expected_trees, predicted_trees):
correct = 0
expected = 0
predicted = 0
crossed = 0

# count numbers of correct, expected and predicted

# constituents, as well as number of crossing brackets
tree_pairs = zip(expected_trees, predicted_trees)

for expected_tree, predicted_tree in tree_pairs:

# convert trees to spans

expected_spans = get_spans(expected_tree)
predicted_spans = get_spans(predicted_tree)
expected += len(expected_spans)

predicted += len(predicted_spans)

# look for matching spans and crossing brackets
for predicted_span in predicted_spans:
had_match = had_crossing = False
for expected_span in expected_spans:

# look for matching spans
if predicted_span == expected_span:
had_match = True

# look for crossing brackets

_, sl, el = predicted_span

_, S2, e2 = expected_span

if s1 <s2 <el <e2ors2<sl<e2c<el
had_crossing = True

# update correct and crossing bracket counts
correct += had_match
crossed += had_crossing



61

# calculate precision, recall, F-measure and crossing brac kets
precision = correct / predicted

recall = correct / expected

f = 2 * precision * recall / (precision + recall)

crossing_brackets = crossed / predicted

return precision, recall, f, crossing_brackets

def get_spans(tree, offset=0):

start = offset

# spans of terminals are length 1
if not tree:
offset += 1

# spans of nonterminals are determined from their children
spans = []
for child in tree:

spans.extend(get_spans(child, offset))

offset = spans[-1][-1]

# add the span for this subtree and return the span list
spans.append((tree.tag, start, offset))
return spans



Chapter 15
Features and Unification

15.1 Draw the DAGs corresponding to the AVMs given in Examples135.2.
Example 15.1

AGREEMENT PERSON
3rd

SUBJECT .
AGREEMENT ~ NUMBER 9

Example 15.2

NUMBER

sg

SUBJECT

PERSON

15.2 Consider the following examples from the Berkeley RestatiPzoject (BERP),
focusing on their use of pronouns.

| want to spend lots of money.
Tell me about Chez Panisse.
I'd like to take her to dinner.
She doesn't like Italian.

Assuming that these pronouns all belong to the cateBooywrite lexical and
grammatical entries with unification constraints that kltwe following exam-
ples.

*Me want to spend lots of money.
*Tell | about Chez Panisse.

*] would like to take she to dinner.
*Her doesn't like Italian.

S — (NP) (Aux VP

(NP CASE) = nominative
VP — VNP ...

(NP CASE) = accusative
NP — Pro

(Pro cAse) = (NP CASE)
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15.3 Draw a picture of the subsumption semilattice correspanttinhe feature struc-
tures in Examples 15.3to 15.7. Be sure to include the mosrgéfeature struc-

SN

(15.3)  (154)  (15.6)
(15.5) (15.7)

An arrow from nodeA to nodeB indicates thaB T A.

15.4 Consider the following examples.

The sheep are baaaaing.
The sheep is baaaaing.

Create appropriate lexical entries for the wotttly sheepandbaaaaing Show
that your entries permit the correct assignment of a valtled®UMBER feature
for the subjects of these examples, as well as their variatts.p

Since the text introduced agreement features for detersjineuns,
auxiliaries and verbs, the desired outcome is:
e ForThe sheep is baaaaingll words haveNUMBER = sg
e ForThe sheep are baaaaingll words haveN\UMBER = pl
Forthe sheemndbaaing we leave the agreements unspecified. Then
for is andare we specify singular and plural agreements, respectively:
Aux — is
(AUXAGREEMENT NUMBER) =sg
Aux — are
(AUXAGREEMENT NUMBER) = pl

We also need to introduce a new grammar rule:
VP — Aux Verb

(AUXAGREEMENT) = (Verb AGREEMENT)
(VP AGREEMENT) = (Verb AGREEMENT)

Then unification should take care of the rest:

e TheVP — Aux Verbrule from above requiregP, AuxandVerb
to have the sameGREEMENT

e TheNP — Det Nominalrule from the chapter requir@®$, Det
andNominalto have the sameGREEMENT
e TheS — NP VPrule gives from the chapter requir8sNP and
VP to have the sameGREEMENT
Thus, for our sentences, tiheix, Verb, Det andNounall must have

the same agreement. So when the vers, iall NUMBER features will
besg and when the verb igre, all NUMBER features will bepl.



64 Chapter 15. Features and Unification

15.5 Create feature structures expressing the diffeser®cAT frames forwhile and
during shown on page 506.

[ ORTH while
CAT Prep
| HEAD [ SUBCAT ([CAT §)) |
[ ORTH during
CAT Prep
| HEAD [ SUBCAT ([CAT NP)) |

15.6 Alter the pseudocode shown in Figure 15.11 so that it per$dha more radical
kind of unification-based parsing described on page 519.

function EARLEY-PARSHwords grammal) returns chart
for (Xo — «,dagx,) in grammardo
if dagx, ({ Xo CAT)) = Sthen
ADDTOCHART((y — e Xo, [0, 0], dag,), chart]0])

for i from O0to LENGTH(words do
for each statein chartfi] do
if INCOMPLETE?(Statg
if NEXT-CAT(state is a part of speecto
SCANNER(State
else
PREDICTORstate
else
COMPLETERState

procedure PREDICTOR(Xo — « e X; (3, [i, j], dagx,))
for each (X2 — ~, dagx,) in grammardo
if new-dag— UNIFY-STATES(dagx, , dagx,, Xo) # Failsthen
ADDTOCHART((X2 — e+, [4, j], new-dag, chart;])

procedure SCANNER((Xo — a e X1 3, [i, j], dagx,))
if dagx, (( X1 CAT)) € PARTS-OF-SPEECHwordgj]) then
ADDTOCHART((X: — worddj] e, [j, j+1], dagx, ), charfj+1])

procedure COMPLETER(Xo — 7 e, [j, k], dagx,))
foreach(X; — « e X5 (3, i, j], dagx,) in chartj] do
if new-dag— UNIFY-STATES(dagx, , dagx, , X1) # Failsthen
ADDTOCHART((X1 — « Xo e 8, [i, k], new-dag, chartk])
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15.7 Consider the following problematic grammar suggested bgksin (1985).

S—> T
(TF)=a
T — T2 A
(TiF)=(T2 FF)
S - A
A — a
Show the firstS state entered into the chart by using your modifi@&DICTOR
from the previous exercise, then describe any problematiatior displayed by

PREDICTORON subsequent iterations. Discuss the cause of the prolldmaav
it might be remedied.

The first two rules in the grammar look like:

Xo — X4 Xo — X1Xo
Xy | caT S [CAT T ]
0
x, [eAr T F
F a X CAT T
! F [ F: ]
X, [caT A]
So the first state put on the chart is:
Xo [cAT 5]
v — X, [0,0], {CAT T]
X1
F a

This state is incomplete, so we go to thee®ICTOR and unify this
state with the second rule, adding the new state:
I CAT T
%o | @)
CAT T
5 em)
| X [caT A
But the RREDICTORthen then unifies this again with the second rule,
adding the new state:

XO - .X1X27 [07 0]7

I X CAT T
o1 @
x { CAT T }
Ve [r (e @]
| X [caT A]
We're now stuck in a loop where we create a new state, unifytit w
rule two, and produce a new state that will unify with rule tagain.
To solve this problem, we need to restrict our view to onlyt par
the dag instead of the whole thing. Then instead of tReMCTOR
unifying whole dags, it would just unify the sub-dags conitad the
category information.

XO i .X1X27 [07 0]7
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15.8 Using the list approach to representing a verb’s subcaitegfan frame, show
how a grammar could handle any number of verb subcategiizizames with
only the following twoVP rules. More specifically, show the constraints that
would have to be added to these rules to make this work.

VP — Verb
VP — VP X

The solution to this problem involves thinking about a rete walk down
a verb’s subcategorization frame. This is a hard probleny might consult
Shieber (1986) if you get stuck.

Under these rules, each element of a verb’s subcategoridaiime is
attached to its owNP. So each time we use thM° — VP Xrule, the
newly introduced/P should contain one more category expected by
the verb. We can do this recursively, by defining the subcaizgtion
of the childVP in terms of its parent.

This approach requires decomposing the subcategoriziaien
so we introduce the syntaX) + Y to mean thakX s the first item in
a list andY is the remaining items.

VP [CAT VP]

HEAD
CAT Verb
_Verb [HEAD ]
_VP CAT VP
HEAD [ suBcarT [1]]
CAT VP
VP heap {SUBCAT <>+}
| X [cat [2]]

15.9 Page 524 showed how to use typed feature structures to egpramstituency.
Use that notation to represent rules 15.11, 15.12, and Ehd®n on page 501.

[ caT VP

HEAD

CAT Verb

_DTRS <[HEAD },[CAT NP}>
[ caT NP

HEAD

DTRS [ cAT  Det CAT  Nominal
I | HEAD [ AGREE [2]] || HEAD [1][ AGREE [2]]
[ cAT  Nominal

HEAD

5TRS [ cAT  Noun
i | HEAD




Chapter 16 |
Language and Complexity

16.1 Is the language™b?a™ context free?
Yes. It can be generated with the following context free gream

S — aSa
S — bb

Technically, to confirm that the language is context freepwist also
show that it is not a regular language. See Exercise 16.3:kaild.

16.2 Use the pumping lemma to show this language is not regular:
L = 2"y" tlikes tuna fishz € A,y € B

The pumping lemma states that if this language is regulan there
exist strings:, b andc such thab # e andab™c € L forn > 0. Given
our language, there are four possible assignmentsiodndc:

e bisallzs:

a=x?
b=2a"
¢ = z%y'likes tuna fish

By the pumping lemma, both?z"z%y* andz?(z")?2%y" must
be in the language. Since strings in our language look like
2"y !, wemusthavg +r+s=t—1=q+2r+s. Butthen
r = 0 andy = ¢, failing they # € requirement of the pumping
lemma.

e bisallys:

q
s

xly”
Yy

a
b
¢ = y'likes tuna fish

By the pumping lemma, bottfy"y*y! andz?y” (y*)%y' must be

in the language. Since strings in our language lookdikg™ !,

we musthave +s+t—1=¢=r+2s+t—1. Butthenr =0

andy = ¢, failing they # e requirement of the pumping lemma.
e b is bothas andys:

a=zx1

b=2za"y*

¢ = y'likes tuna fish
By the pumping lemmay?(z"y*)%yt = 2%2"y*2"y*y" must be
in the language. But this string allows to follow ys, which is
not possible in our language.
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e b containdikes tuna fish By the pumping lemma, we should be
able to generate” for any positiven, but our language is limited
to a singldikes tuna fishsob cannot contaitikes tuna fish

Thus, since no string in our language can be divided intbandc
appropriately for the pumping lemma, our language is natlag

16.3 Partee et al. (1990) showed that the languag€,z € a,b+ is not regular,
by intersecting it with the regular language*bbaa*. The resulting language
is a”b%a™. Use the pumping lemma to show that this language is not aegul
completing the proof thatz, z € {a, b} is not regular.

By the pumping lemma, there should exist stringg andz such that
y # e andxy”z € a"b%a™ for n > 0. Given our language, there are
three possible assignmentsagfy andz:

e yis all as and before the firdt

= a?
y=a"
2 = a’b%a’

By the pumping lemma, both%a"a*b?a’ and a?(a”)%a’b?a’
must be in the language. Since strings in our language I&ek li
a™b?a™, we must havey +r + s = t = g + 2r 4+ s. But then
r = 0 andy = e, failing they # e requirement of the pumping

lemma.
e yisallas and is after the lagt
z = a’b®a”
y=a’
z = at

By the pumping lemma, both?b%a"a*a’ and a?b?a”(a*)?a’
must be in the language. Since strings in our language l&ek li
a™b%a™, we must have + s +t = ¢ = r + 2s + t. But then

r = 0 andy = e, failing they # e requirement of the pumping
lemma.

e y contains anys. By the pumping lemma, we should be able to
generate,™ for any positiven, but our language is limited to a
maximum of 2bs, soy cannot contaimns.

So the language is not a regular language, and since it car-be e
pressed with a context free grammar, it is a context freedagg.

16.4 Build a context-free grammar for the language
L= {zzf|z € {a,b}*}
Given thatz* meansr reversed, the following grammar produdes

S — aSa
S — bSbH

S — ¢
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The Representation of Meaning

17.1 Peruse your daily newspaper for three examples of ambiggeniences or head-
lines. Describe the various sources of the ambiguities.

The following ambiguous headlines are from BBC news aricle

US offensive in Euphrates regionEither offensiveis an adjective,
in which case the US has acted inappropriately near the Eu-
phrates, obffensivds a noun, in which case the US is deploying

troops there.

Baby doctor cleared of misconduct Either Baby indicates the age
of doctor, in which case a very young doctor was cleared of mis-
conduct, orBabyindicates the type ofioctor, in which case a
doctor who takes care of infants was cleared.

PM vows to stand by Afghanistan Eitherstand byis used literally,
in which case the prime minister will be physically presarhg-
where near the country of Afghanistan stand byis used figura-
tively, in which case the prime minister will support the déans
made by the governing body of Afghanistan.

17.2 Consider a domain in which the wooffeecan refer to the following concepts
in a knowledge-based system: a caffeinated or decaffeliseerage, ground
coffee used to make either kind of beverage, and the beanss#iees. Give
arguments as to which of the following uses of coffee are godnis and which

are vague.
1. I've had my coffee for today.

This use is vague - it is clear that the beverage is what thekspe
had, but it is not clear whether the beverage was caffeinated
decaffeinated.

2. Buy some coffee on your way home.

This use is ambiguous - this could be a request to buy beans,
ground coffee, or beverages.

3. Please grind some more coffee.

This use is vague - it is clear that coffee beans are what igto b
ground, but it is not clear whether the beans should be ceaffedl
or decaffeinated.
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17.3 The following rule, which we gave as a translation for Exagnp¥.26, is not a
reasonable definition of what it means to be a vegetariaauestt.

VzVegetarianRestaurant(z) = Serves(x,VegetarianFood)

Give aFoL rule that better defines vegetarian restaurants in termsaf thhey
serve.

VaVegetarianRestaurant(z) =
Serves(z, VegetarianFood) N
(VyServes(z,y) = Is(y,VegetarianFood))

17.4 GiveFoL translations for the following sentences:

1. Vegetarians do not eat meat.
VaVegetarian(r) = —Fats(z, Meat)

2. Not all vegetarians eat eggs.
JxVegetarian(z) A —=Eats(x, Eggs)

17.5 Give a set of facts and inferences necessary to prove tlwviol) assertions:

1. McDonald’s is not a vegetarian restaurant.
2. Some vegetarians can eat at McDonald’s.

Don't just place these facts in your knowledge base. Showttiey can be
inferred from some more general facts about vegetarian§/irbnald’s.

The initial knowledge base:

VxServes(x, Meat) = —VegetarianRestaurant(z)
VxServes(x, Vegetables) = JyVegetarian(y) A CanEatAt(x,y)
Serves(McDonalds, Meat)

Serves(McDonalds, Vegetables)

Inferring that McDonald's is not a vegetarian restaurant:

Serves(McDonalds, Meat)
VzServes(x, Meat) = —VegetarianRestaurant(z)
—VegetarianRestaurant(McDonalds)

Inferring that some vegetarians can eat at McDonald’s:

Serves(McDonalds, Vegetables)
VzServes(x, Vegetables) = JyVegetarian(y) A CanEat At(x,y)
JyVegetarian(y) A CanEat At(McDonalds, y)
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17.6 For the following sentences, givoL translations that capture the temporal re-
lationships between the events.

1. When Mary'’s flight departed, | ate lunch.

dd,e, f,id,te; Na, Ne
Flight(f) A Passenger(f, Mary) A
Departing(d) A Departer(d, f) A
Eating(e) A Eater(e, Speaker) A Meal(e, Lunch) A
IntervalOf(d,iq) A IntervalOf(e,ie) A
EndPoint(iq,ng) A\ Start Point(ie,ne) A Precedes(ng, ne)

2. When Mary’s flight departed, | had eaten lunch.

dd,e, f,id,te; Na, Ne
Flight(f) A Passenger(f, Mary) A
Departing(d) A Departer(d, f) A
Eating(e) A Eater (e, Speaker) A Meal(e, Lunch) A
IntervalOf(d,iq) A IntervalOf(e,ie) A
StartPoint(iq, na) A EndPoint(ic,ne) A Precedes(ne,ng)

17.7 On page 560, we gave the representafisur(Centro, Bacaro) as a transla-
tion for the sentenc€entro is near Bacaroln a truth-conditional semantics, this
formula is either true or false given some model. Critiqus ttuth-conditional
approach with respect to the meaning of words fiker.

Words like near require a particular frame of reference to be inter-
preted correctly. For example, if the distance betwE€emtro and
Bacarowas around 5 miles, it might be appropriate to consider them
neareach other if traveling by car, but not if traveling by foothus
using predicates likeVear(z,y) where for a given two places the
predicate must be either true or false, is only practicdléfé is only

a single frame of reference that the system must understand.
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Computational Semantics

18.1 Develop a set of grammar rules and semantic attachmentaniehpredicate
adjectives such as the following:

1. Flight 308 from New York is expensive.

2. Murphy’s restaurant is cheap.

To produce representations likkheagMurphysRestaurahtwe can
use the following rules:

VP — Verb Adj {Verb.serfAdj.sem}
Verb — is {AP.Xz.P(z)}

Adj — expensive {Expensivé

Adj — cheap {Cheag

Applying these rules to the latter sentence looks like:

Az.x(MurphysRestaurant)(AP.\x.P(z)(Cheap))
= A\z.z(MurphysRestaurant)(Az.Cheap(z))
= Cheap(MurphysRestaurant)

18.2 Develop a set of grammar rules and semantic attachmentsttiehao-called
control verbsas in the following:

1. Francadecidedo leave.

2. Nicolastold Franco to go to Frasca.

The first of these is an example of subject contrékancoplays the role of the
agent for bottdecideandleave The second is an example of object control—
thereFranco is the person being told and the agent of the going event. The
challenge in creating attachments for these rules is togshpncorporate the
semantic representation of a single noun phrase into tvesrol

One approach to this problem is to give predicates tikeideand
tell two extra parameters - one for the other event they take as an
argument, and one which is that event’s predication. Inwig, the
control predicates can pass all the necessary informatido their
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controlled predicates. The following rules take that appto

S— NP VP {NP.senfVP.sem}

VP — Verb to VP {Verb.senVP.sem}

VP — Verb NP to VP {NP.sen(Verb.sem(VP.sem}
VP — Verb to NP {NP.senf\Verb.senm}

Verb— leave {Az.)e.Leavinde) A Leave(e, )}
Verb— go {Aw.\x)e.Going(e) A Goele, x) A Destinatiorfe, w)}
Verb — decided {APAz.Ad)e.P(x)(e)

A Decidingd) A Decided, z:) A Decisior(d, e) }
Verb — told {Aw.APAz.Ad e.P(w)(e) A Telling(d)

A Hearen(d, w) A Speakefid, x) A Messagéd, e) }

Note that we had to usefor events instead af as before. This was
necessary to make sure that both the controlling and céedreérbs
referred to the same events. As a result, when the semaratigsémn
of a sentence is complete, we should read any remamamy.

Here is the derivation of the V§o to Frascausing these rules:

NP.senfVerb.sem

Az.xz(Frasca) (Aw. Az e.Going(e) A Goerle, z) A Destinatiorfe, w))
Aw. Az Ae.Going(e) A Goer(e, z) A Destinatiorfe, w)(Frasca)
Az)e.Going(e) A Goer(e, z) A Destinatiorfe, Frasca)

And here is the derivation of the \iBld Franco to go to Frasca

NP.seniVerb.sem(VP.sen
Az.xz(Franco)(Verb.sem(VP.sem
Verb.senfFranco) (VP.sen)
Aw. APAx.Ad)Xe.P(w)(e) A Telling(d) A Hearen(d, w)
NSpeakefd, x) A Messagéd, e)(Franco) (VP.sem
APAx.AdXe.P(Franco)(e) A Telling(d) A Hearer(d, Franco)
NSpeakefd, x) A Messagéd, e)(VP.sen)
APAz.AdXe.P(Franco)(e) A Telling(d) A Hearer(d, Franco) A Speakefd, x)
AMessagél, e)(AzAe.Going(e) A Goel(e, z) A Destinatiotie, Frasca))
Az.AdXe.Going(e) A Goer(e, Franco) A Destinatiorie, Frasca) A Telling(d)
AHearen(d, Franco) A Speake(d, ) A Messagéd, e)
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Computational Semantics

18.3 None of the attachments given in this chapter provide tealpaformation.

Augment a small number of the most basic rules to add temjfiaimation
along the lines sketched in Chapter 17. Use your rules tdeeraaning repre-
sentations for the following examples:

1. Flight 299 departed at 9 o’clock.
2. Flight 208 will arrive at 3 o’clock.
3. Flight 1405 will arrive late.

We first define some new temporal predicates for convenience:

vd, eBefordd, e) — 3i, jJEndd, i) A Starfe, j) A Precede&, j)
Vd, eAt(d, e) — i, jStart(d, i) A Start(e, ) A End(d, j) A End(e, 5)

And now the rules for creating temporal representations:

S— NP VP {Ae.NP.senfVP.sem(e)}

VP — Aux VP {Aux.sertVP.sem}

VP — Verb PP {PP.sen(\Verb.sem}

VP — Verb Adv {Adv.sen\Verb.sem}

PP — Prep NP {NP.senfPrep.sen}

Verb — Verb Suffix {Suffix.serfVP.sem}

Verb — depart {Ae.\z.Departinge) A Departele, x)}

Verb— arrive {Ae.Az.Arriving(e) A Arriver(e, z)}

Aux— will {\P.)\e.BefordNow, e) A P(e)}

Suffix— -ed {\P.)\e.Beforde,Now) A P(e)}

Prep— at {Ax.AP.)e.At(e,x) A P(e)}

Adv— late {\P.)\e.Beford Expectedintervdt),e) A P(e)}

To see these rules in action, let’'s derive the representdtiothe
second sentence. We'll start with the BIF3 o’clock

NP.seniPrep.sem
Az.x(3:00)(Prep.sem
Az.z(3:00)(Az.AP.)e.At(e,x) A P(e))
AP.)e.At(e, 3:00) A P(e)

Now the VParrive at 3 o’clock

PP.seniVerb.sem

PP.seniie. \xz.Arriving(e) A Arriver(e, x))

AP.)e.At(e, 3:00) A P(e)(Ae.Ax.Arriving(e) A Arriver(e, x))
Ae.At(e, 3:00) A Az.Arriving(e) A Arriver(e, )

e Az At(e, 3:00) A Arriving(e) A Arriver(e, )

, L
, L
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18.4

18.5

Now the VPwill arrive at 3 o’clock

Aux.senfVP.sem

Aux.serfhe.\z.At(e, 3:00) A Arriving(e) A Arriver(e, z))

AP.)e.BeforéNow, e) A P(e)(Ae.Az.At(e, 3:00) A Arriving(e) A Arriver(e, z))
Ae.BefordNow, e) A \x.At(e, 3:00) A Arriving(e) A Arriver(e, x)

e Az.BeforeNow, e) A At(e, 3:00) A Arriving(e) A Arriver(e, x)

And finally the whole sentence:

Ade.NP.seniVP.senfe))

Ae.NP.senihe. \x.BeforgNow, e) A At(e, 3:00) A Arriving(e) A Arriver(e, z)(e))
Ae.NP.seni\z.BeforgNow, e) A At(e, 3:00) A Arriving(e) A Arriver(e, x))

e Azx.x(F208)(\x.BefordNow, e) A At(e, 3:00) A Arriving(e) A Arriver(e, z))
de.(Az.BefordNow, e) A At(e, 3:00) A Arriving(e) A Arriver(e, x))(F208)
Ae.BefordNow, e) A At(e, 3:00) A Arriving(e) A Arriver(e, F208)

As noted in Chapter 17, the present tense in English can ek toseefer to
either the present or the future. However, it can also be tesegpress habitual
behavior, as in the following:

1. Flight 208 leaves at 3 o’clock.

This could be a simple statement about today’s Flight 20&lt@rnatively it
might state that this flight leaves at 3 o’clock every day. alzeaFoL mean-
ing representation along with appropriate semantic atectts for this habitual
sense.

Assuming a suitably defineduring predicate, one possible solution
is to have the present tense introduce a universal quamtifegrdays:

Verb— Verb PRES {)e.VdDay(d) = Verb.serte) A During(e, d)}

This says roughly that the event occurs (at least once) elagry Of
course, this solution is not very general, as other uses loituads
may require longer or shorter spans than a day.

Implement an Earley-style semantic analyzer based on gwiskion on page
604.

It may simplify the implementation to use a language thatieitly
supports)\ and A-reduction, e.g. lisp, scheme, python, etc. Then
the semantic attachments can just be norkainctions, and passed
around and applied as usual.

The key to making such a type-driven approach work is thétgbil
to reason not only about the types of the semantic attactanbut
also about the types of the values that result fromtreductions
(the types of the return values).
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18.6 It has been claimed that it is not necessary to explicitlytie semantic attach-
ment for most grammar rules. Instead, the semantic attactfiorea rule should
be inferable from the semantic types of the rule’s constitsie-or example, if a
rule has two constituents, where one is a single-argutk@xpression and the
other is a constant, then the semantic attachment must dppl-expression
to the constant. Given the attachments presented in thig@haoes thisype-
driven semanticseem like a reasonable idea? Explain your answer.

Using this approach would be difficult given that even nouraghs
are treated as-expressions in this chapter. Consider the simple sen-
tenceMaharani closed The representations from the chapter look
like:

Az.z(Maharani)
Az.Closedz)

Now, when we see theP VPconstituent, there is no obvious way to
guess whether we apply the verb function to the noun (wronff)e
noun function to the verb (right) because bMhharaniandClosed
have the same type: a single-argumke@xpression.

18.8 Using a phrasal search on your favorite Web search engiflecta small corpus
of the tip of the icebergxamples. Be certain that you search for an appropriate
range of examples (i.e., don't just search for “the tip of iteberg”). Analyze
these examples and come up with a set of grammar rules thattgraccounts
for them.

Some examples from the web:

the tip of an iceberg ofcool designs,tremendous proportigns

the tip of{fraud,xenophobic,very large.} iceberg

the tip of{a,the,my,..} iceberg

e the{visible,.. } tip of the iceberg
One set of rules that could account for these examples:

NP — TipNP of IcebergNP {TipNP.serticebergNP.se}
TipNP — Det TipNominal {Det.seniTipNominal.ser}
TipNominal— AdjP TipNominal {AdjP.seniTipNominal.seni
TipNominal— tip {Az.Beginning(x}
IcebergNP— Det IcebergNominal {Det.senflcebergNominal.sejh

IcebergNominal~ AdjP IcebergNominal {AdjP.senflicebergNominal.sejh
IcebergNominal~ NP IcebergNominal {NP.senllcebergNominal.sejn
IcebergNominal- IcebergNominal PP {PP.senflcebergNominal.sep
IcebergNominal iceberg {LargeThing
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18.9 Collect a similar corpus of examples for the idioniss the boatAnalyze these
examples and come up with a set of grammar rules that corractiounts for
them.

Some examples from the web:

e miss{the,your,.. } boat

e miss the boafagain,in China,on aged care reform, }..
One set of rules that could account for these examples:

VP — MissTheBoatVP {MissTheBoatVP.sem
MissTheBoatVP- MissTheBoatVP PP {PP.seniMissTheBoatNP.serh

MissTheBoatVP— miss BoatNominal {\z.3eMissinge) A
Missel(e, z) A
ThingMissede, BoatNominal.sen}

BoatNominal— Det boat {Det.senfiimportantOpportunity}



Chapter 19
Lexical Semantics

19.1 From a dictionary of your choice, collect three definitiorfsoodinary non-
technical English words that you feel are flawed in some wapld&n the nature
of the flaw and how it might be remedied.

There are a variety of reasonable responses to this qugbtibthe
most obvious ones include some form of circularity, i.ee,dlefinition
of a word uses the word itself, or refers to a word (which retera
word . ..) which refers to the original word.

19.2 Give a detailed account of similarities and differences agnihe following set
of lexemesimitation, syntheti¢ artificial, fake andsimulated

Some possible similarities and differences between thesdsy

o fake imitation andsimulatedall imply that the object was inten-
tionally created to look or function like another object

e syntheticandartificial imply that the object was not created by
natural means, but do not necessarily imply that it was ecktat
mimic another object

19.3 Examine the entries for these lexemes in WordNet (or sontedary of your
choice). How well does it reflect your analysis?

WordNet putdfake imitation andsimulatedinto in the same synset,
indicating that they all share a sense with roughly the sam@ning.
WordNet indicates thaartificial is SIMILAR-TO both syntheticand
fake/imitation/simulatedyet does not lissyntheticas SIMILAR-TO
fake/imitation/simulated

19.4 The WordNet entry for the noumatlists six distinct senses. Cluster these senses
by using the definitions of homonymy and polysemy given iis thapter. For
any senses that are polysemous, give an argument as to heerhbes are re-
lated.

One possible grouping of senses:
Animal bats
e bat#1l: nocturnal mouselike mammal. ..

Bats in sports
e bat#5: a club used for hitting a ball in various games. . .

e bat#3: a small racket. .. for playing squash A type of bat#p
e bat#4: the club used in playing cricket A type of bat#p
e bat#2: (baseball) a turn trying to get a hit A (se of bat#p
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19.5 Assign the various verb arguments in the following WSJ eXamip their ap-
propriate thematic roles, using the set of roles shown in 6.
1. The intense heat buckled the highway about three feet.
2. He melted her reserve with a husky-voiced paean to her eyes
3. But Mingo, a major Union Pacific shipping center in the 189Gs melted
away to little more than the grain elevator now.

Part of the goal of this exercise is to understand why thestlishno
universally agreed-upon set of thematic roles: for anymyset, there
are always still constituents that don’t quite match.

Given the thematic roles of Fig. 19.6, one reasonable assgh
of thematic roles is:

1. [ForceThe intense heat] buckledjeme the highway]
[resuLT about three feet].

2. [acent He] melted fyeme her reserve] |kstrumenTt With a
husky-voiced paean to her eyes].

3. But[experieEnceErMINGO, @ major Union Pacific shipping center
in the 1890s,] has melted awaydsu,t to little more than the
grain elevator] now.

19.6 Using WordNet, describe appropriate selectional regtriston the verbdrink,
kiss andwrite.

drink
AGENT living thing#1.: a living (or once living) entity
THEME beverage#l: any liquid suitable for drinking

kiss
AGENT animal#1: a living organism. . .[having] voluntary moverhen
THEME physical object#1: a tangible and visible entity. . .

write
AGENT writer#2: a person who is able to write. ..
THEME writing#2: the work of a writer. ..

19.7 Collect a small corpus of examples of the vednmk, kiss andwrite, and ana-
lyze how well your selectional restrictions worked.

Some phrases from the web that break the selectional téstisc
drink caffeine In WordNet,caffeineis a compound, not a beverage.
sun kissed In WordNet,sunis a star, not an animal.

yahoo.com wrote In WordNet,Yahoois software, not a writer.
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19.8 Consider the following examples from McCawley (1968):
My neighbor is a father of three.
?My buxom neighbor is a father of three.

What does the ill-formedness of the second example implyahow con-
stituents satisfy or violate selectional restrictions?

Selectional restrictions must apply not to individual Eatiitems but
to the entire constituent. In other words, we must semditicaer-

pret the entire phrase before we attempt to apply seledtiestic-

tions to it.

19.9 Find some articles about business, sports, or politics frour daily newspaper.
Identify as many uses of conventional metaphors as you cdnese articles.
How many of the words used to express these metaphors haveseanteither
WordNet or your favorite dictionary that directly reflecetmetaphor.

A good set of metaphors are available from the Berkeley Quined
Metaphor site Hfttp://cogsci.berkeley.edu/lakoff/ ). For
example:

Competition Is A Race e.g.,The arms racecorresponding to Word-
Net’s race#1.

Ideas Are Food e.g., half-baked ideacorresponding to WordNet's
half-baked#1.

Note that both WordNet metaphorical senses were marked ¢idnm
ing that they were the first and most common uses of the wordsn- e
more common than the literal uses.

19.10 Consider the following example:

The stock exchange wouldn't talk publicly, but a spokesiraid a news
conference is set for today to introduce a new technologgiyeb

Assuming that stock exchanges are not the kinds of thing<#raliterally talk,
give a sensible account for this phrase in terms of a metaghoetonymy.

The people that “wouldn’t talk publicly” here are the peojpleharge
of the company that runs the stock exchange. Thus, this eptiebe
a multilayered metonomy:

HeadsOfOrganizatior~ Organization— ProcessRunByOrganization

19.11 Choose an English verb that occurs in both FrameNet and RrdpBCompare
the FrameNet and PropBank representations of the argumiethits verb.

SemLink (ttp://verbs.colorado.edu/semlink/ ) provides a
browser for viewing predicates aligned across FrameNeip®Bank
and other sources. This can be used to quickly examine tferetit
role sets, e.g., for the predicagell:
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PropBank FrameNet
Arg0:Seller Seller
Arg1:Thing Sold Goods
Arg2:Buyer Buyer

Arg3:Price Paid Money / Rat&pn-core rolep
Arg4:Benefactive Purpose / Reasamf-core rolef
Note that core roles Arg3 and Arg4 in PropBank correspon@te s
eral different non-core roles in FrameNet. In particulaipgBank
introduces an Arg4:Benefactive role, even though it alydlaals an
ARGM-PRP which more closely corresponds to the Purposeimole

FrameNet.



Chapter 20 | |
Computational Lexical Semantics

20.1 Collect a small corpus of example sentences of varying lenfyjom any news-
paper or magazine. Using WordNet or any standard dictigrigtgrmine how
many senses there are for each of the open-class words irseatdnce. How
many distinct combinations of senses are there for eacbrseg® How does this
number seem to vary with sentence length?

An example from Wikipedia, with the number of WordNet serfees

each open-class word indicated by (N):
At 05:20:59 GMT(1) this morning(4), the Echostar(0) XI(2)
satellite(3) was successfully(1) launched(6) into a gaesy
chronous(1) transfer(6) orbit(5) atop a Zenit-3SL(0) car-
rier(11) rocket(5).

For this sentence, there are

1%4%x2%x3x1x6x1+x6x5*11*5= 237600

possible combinations of senses. Since the number of clistom-
binations is just the product of the number of senses for gaei,
in general we expect that the longer the sentence is, theegribe
number of possible sense combinations.

20.2 Using WordNet or a standard reference dictionary, tag egen-alass word
in your corpus with its correct tag. Was choosing the corsectse always a
straightforward task? Report on any difficulties you endetad.

WordNet senses are fine-grained and often difficult to aswiigin
confidence, but here is a reasonable assignment of specifies&o
the sentence from Exercise 20.1:
At 05:20:59 GMT#1 this morning#1, the Echostar XI#1
satellite#1 was successfully#1 launched#2 into a geosyn-
chronous#1 transfer#1 orbit#1 atop a Zenit-3SL carrier#2
rocket#1.
An example difficulty: is the appropriate meaningXifin this sce-
nario “the cardinal number that is the sum of ten and one” itf‘ike
14th letter of the Greek alphabet”? The sense assignmentat®
sumes the former, but the latter could be a reasonable cheiaell.

20.3 Using the same corpus, isolate the words taking part in aliérb-subject and
verb-object relations. How often does it appear to be the taat the words
taking part in these relations could be disambiguated with information about
the words in the relation?

Many words cannot be disambiguated using just verb-sulajedt
verb-object relations. For example, consider the sentéoce Ex-
ercise 20.1. The subject-verb relation betwsatelliteandlaunched
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is useful to distinguish between “begin with vigor” (laurel) and
“propel with force” (launch#2), sinceatellitesgenerally don’t expe-
rience vigor. However, this relation is not so useful fortidiguish-
ing between “propel with force” (launch#2) and “launch on aiden
voyage” (launch#3), assatellitecould undergo either of these.

20.4 Between the wordsatandfind, which would you expect to be more effective in
selectional restriction-based sense disambiguation?2Vhy

Generally, we expect words with stricter selectional festms to be
more useful because they allow fewer senses in their argismear
example, if we saveat a dish we could rule out the sense dish#1 “a
container for holding or serving food”, which we could noterout if
we sawfind a dish

20.5 Using your favorite dictionary, simulate the original Leskrd overlap disam-
biguation algorithm described on page 647 on the phrase flies like an arrow
Assume that the words are to be disambiguated one at a tiome,|éft to right,
and that the results from earlier decisions are used latbeiprocess.

A subset of the WordNet senses:

time#n#5 (the continuum of experience in which events pass
from the future through the present to the past)

time#v#1l (measure the time or duration of an event or action o
the person who performs an action in a certain period
of time) “he clocked the runners”

flies#n#1 (two-winged insects characterized by active fligh

flies#v#8 (pass away rapidly) “Time flies like an arrow”; “Tém
fleeing beneath him”

like#tv#4  (feel about or towards; consider, evaluate, oardj
“How did you like the President’s speech last night?”

like#a#l  (resembling or similar; having the same or sombaeft
same characteristics; often used in combination) “suits
of like design”; “a limited circle of like minds”; “mem-
bers of the cat family have like dispositions”; “as like
as two peas in a pod”; “doglike devotion”; “a dream-
like quality”

arrow#n#1 (a mark to indicate a direction or relation)

arrow#n#2 (a projectile with a straight thin shaft and anahead
on one end and stabilizing vanes on the other; intended
to be shot from a bow)

Disambiguatingime:
o time#n#5 sharegasswith flies#v#8
e time#v#1 shareBmewith flies#v#8

There is atie, so we should select the most frequent sens&Vad-
Net does not compare sense frequencies between nouns ésdseer
we cannot select a sense fone
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Disambiguatindlies
o flies#n#1 sharewvo with like#a#l
o flies#v#8 sharegasswith time#n#5timewith time#v#1 andike
with like#v#4 and like#a#1
So we select flies#v#8.
Disambiguatindike:
o like#v#4 sharetike with flies#v#8

o like#ta#1 sharebke with flies#v#8 (andwo with flies#n#1, but
we have already decided on flies#v#8)

There is atie, so we should select the most frequent sens&Vad-
Net does not compare sense frequencies between verbs aw adj
tives, so we cannot select a senselila.

Disambiguatingarrow:

e arrow#n#1 shares nothing with any other signatures

e arrow#n#2 shares nothing with any other signatures
Since there is a tie, we select the most frequent sense, amtdw

In the end, we were only able to assign sense8iés and arrow,
with the latter simply assigned the most frequent sensdofPeance
would probably have been even worse had we included all ther ot
possible senses of each of these words in WordNet - therdysinag
not enough overlap in the sense glosses and definitions ¢ondiee
appropriate senses.

20.6 Build an implementation of your solution to the previousreige. Using Word-
Net, implement the original Lesk word overlap disambigomtalgorithm de-
scribed on page 647 on the phrdsme flies like an arrow

import wordnet

punct_matcher = re.compile(’[%s]+ % re.escape(string.p unctuation))
stop_words = set(line.strip() for line in open(’stop_word s.txt"))

def get_senses(stems):

# collect synsets for each stem
default_synsets = []

synset_lists = []

synset_sigs = {}

for stem in stems:

# don’t look for senses for stopwords

if stem in stop_words:
synset_lists.append([])
default_synsets.append(None)

# get synsets from WordNet, calculate signatures and
# save them, and set default synset to the first one
else:
synsets = wordnet.synsets(stem)
synset_lists.append(synsets)
default_synsets.append(synsets[0])
for synset in synsets:

# the signature is set of all words in the
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# definitions and examples, skipping stopwords
signature = set()
text_lists = synset.definitions, synset.examples
for text_list in text_lists:
for text in text_list:

text = punct_matcher.sub(”, text)

signature.update(text.lower().split())
synset_sigs[synset] = signature - stop_words

# fill in the senses incrementally
for i, synset_list in enumerate(synset_lists):

# combine the signatures of all other synsets currently
# still being considered for the words
other_sig = set()
for other_list in synset_lists[:i] + synset_lists[i + 1:]:
for synset in other_list:
other_sig.update(synset_sigs[synset])

# for each synset of the word, count the overlapping
# words between its signature and the combined signature
overlap_counts = {}
for synset in synset_list:
overlaps = synset_sigs[synset] & other_sig
overlap_counts[synset] = len(overlaps)

# select the synset with the greatest overlap, or if no
# synsets had any overlap, use the most frequent sense
if synset_list:
max_synset = max(synset_list, key=overlap_counts.get)
if overlap_counts[max_synset] ==
max_synset = default_synsets][i]
synset_lists[i] = [max_synset]

# return the selected synsets (or None for stopwords)
return [synset_list[0] if synset_list else None
for synset_list in synset_lists]

20.7 Implement and experiment with a decision-list sense disgmaltion system. As
a model, use the kinds of features shown in Fig. 20.2 on pagel8ge one of the
publicly available decision-list packages like WEKA (oedRussell and Norvig
(2002) for more details on implementing decision-list feag yourself). To
facilitate evaluation of your system, you should obtain ofithe freely available
sense-tagged corpora.

Data for a variety of different WSD tasks are available fréma $en-
sEval and SemEval competitions:

http://www.senseval.org/
http://nlp.cs.swarthmore.edu/semeval/

A good solution to this problem will involve not only trairgra model
on the data, but also inspecting the model, figuring out sohikeo
errors it's making, and then introducing features accayiginThese
kinds of decision list models are unlikely to produce staft¢he-art
performance, but constructing them should at least buildesin-
tuitions about what kinds of features are important for weethse
disambiguation.
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20.8

20.9

Evaluate two or three of the similarity methods from the jmiphvailable Word-
net Similarity package (Pedersen et al., 2004). You mighthi® by hand-
labeling some word pairs with similarity scores and seeiog vell the algo-
rithms approximate your hand labels.

In general, comparing the absolute values of the varioudasity
metrics is probably not as useful as comparing the relatigerings.
For example, both the Resnik and Jiang & Conrath measuresfide
nickelas being more related fandthan it is toscale while the Path
Length measure identifies these pairs as being equallecelat

| nickel-fund nickel-scale
Path Length 0.1429 0.1429
Resnik 6.6478 6.4379
Jiang & Conrath 0.1516 0.1211

Implement a distributional word similarity algorithm thzgin take different mea-
sures of association and different measures of vector aiityil Now evalu-
ate two measures of association and two measures of veotdarsiy from
Fig. 20.13 on page 666. Again, you might do this by hand-iagedome word
pairs with similarity scores and seeing how well the aldons approximate

these labels.

from __ future__ import division
import collections

import math

ddict = collections.defaultdict

# a generic model for calculating word similarity, paramete rized
# by two functions: one for producing a vector from a word, and
# one for comparing two vectors
class WordSimilarityModel(object):
def __init_ (self, get_vector, get_similarity):
self._get_vector = get_vector
self._get_similarity = get_similarity
def _ call__ (self, wordl, word2):
vectorl = self._get_vector(wordl)
vector2 = self._get_vector(word2)
return self._get_similarity(vectorl, vector2)

# a generic model for creating feature vectors for words, bas ed
# on a list of words and the relations they were observed with
class WordVectorModel(object):
def __init__ (self, word_relation_lists):

self._word_rel_counts = ddict(lambda: ddict(lambda: 0))

self._word_rel_count = 0

self._word_counts = ddict(lambda: 0)

self._rel_counts = ddict(lambda: 0)

# calculate counts of words and relations
for word, relations in word_relation_lists:
for relation in relations:
self._word_rel_counts[word][relation] += 1
self._word_rel_count += 1
self._word_counts[word] += 1
self._rel_counts[relation] += 1

# pick a canonical order for the vectors
self._rels = sorted(self._rel_counts)

# probability of the word appearing with the relation
def get_probability(self, word, rel):
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word_rel_count = self._word_rel_counts[word][rel]
word_count = self._word_counts[word]
return word_rel_count / word_count

# pointwise mutual information between word and relation ev ents
def get_mutual_information(self, word, rel):
word_given_rel_prob = self.get_probability(word, rel)
rel_prob = self._rel_counts[rel] / self._word_rel_count
try:
return math.log(word_given_rel_prob / rel_prob, 2)
except OverflowError:
return 0

# vector of relation probabilities
def get_probability_vector(self, word):
return self._get_vector(self.get_probability, word)

# vector of word-relation pointwise mutual informations
def get_mutual_information_vector(self, word):

func = self.get_mutual_information

return self._get_vector(func, word)

# helper for creating vectors
def _get_vector(self, func, word):
return [func(word, rel) for rel in self._rels]

# calculate Jaccard similarity

def get_jaccard_similarity(vectorl, vector2):
top = sum(min(x1, x2) for x1, x2 in zip(vectorl, vector2))
bottom = sum(max(x1, x2) for x1, x2 in zip(vectorl, vector2) )
return top / bottom

# calculate Dice similarity

def get_dice_similarity(vectorl, vector2):
top = 2 * sum(min(x1, x2) for x1, x2 in zip(vectorl, vector2))
bottom = sum(xl + x2 for x1, x2 in zip(vectorl, vector2))
return top / bottom

Scores may then be generated like this:

>>> words = ...
>>> vector_model = WordVectorModel(get_window_relation s(5, words))
>>> get_sim = WordSimilarityModel(vector_model.get_pro bability_vector,

get_jaccard_similarity)
>>> get_sim(red’, 'green’)
0.046843607909485496

The following similarities, based on Wall Street Journabgauggest

thatred is more related tgreenthan it is toangry.

sim(red, green) assog o assop)y|
SiMjacecard 0.047 0.017
SiMpjice 0.089 0.034
sim(red, angry) assOBrgp ASSOp|
SiMjaccard 0.033 0.011
SiMpjice 0.063 0.021
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21.1 Early work in syntactic theory attempted to characterizegfor pronominaliza-

tion through purely syntactic means. One such early rubrfmets a pronoun by
deleting it from the syntactic structure of the sentencedbatains it and replac-
ing it with the syntactic representation of the antecedeninnphrase. Explain
why the following sentences (called “Bach-Peters” sergshare problematic
for such an analysis:

(21.92) The man who deserves it gets the prize he wants.
(21.93) The pilot who shot at it hit the MIG that chased him.

What other types of reference discussed on pages 698—7@tarematic for
this type of analysis?

For both of these sentences, the referring expression spmmnoun
is contained in the referring expression for the other pumaoAs a
result, replacing expressions with their antecedentssléadnfinite
recursion, e.g.:

e [The man who deserves [jf];

¢ [The man who deserves [the prize [helants]);

e [The man who deserves [the prize [the man who deserves [the

prize [he] wants]]; wants]];

e etc.
Another major problem with simply replacing replacing reifieg ex-
pressions with their antecedents is that names and botfinitdand
definite noun phrases frequently have no antecedent in xtheRer
examplethe mann the sentences above has no antecedent, and there-

fore the syntactic substitution approach would be unabkesgign it
a meaning.

21.2 Draw syntactic trees for Example 21.66 on page 707 and appbbkls tree-

search algorithm to it, showing each step in the search.

St
/\
NP7 1 VP
| - T
John saw NP;.2 PP

a beautiful 1961 Ford Falcorat the used car dealership
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S
/\
NP2 1 VP
| T
He showed NPs o PP
|
it to NP 3
|
Bob
S
/\
NPs.1 VP
| PN

He bought NP|3_2
it
Determining the referent of NR (He):
1. Startat NR; (He)
2. Go upto $ and traverse all unseen left branches
3. Determine that there are no unseen left branches alorgathe
4. Move to § and traverse it left to right
5. Propose and accept NP(John)
Determining the referent of NB (it):
1. Startat NR (it)
2. Go upto g and traverse all unseen left branches
3. Determine that NP; (He) does not have an NP or S node be-
tween itself and $
4. Move to S and traverse it left to right
5. Propose NP; (John), but reject it since gender does not match
6. Propose and accept NP (a beautiful 1961 Ford Falcon
Determining the referent of NR (He):
1. Startat NB; (He)
2. Go upto g and traverse all unseen left branches
3. Determine that there are no unseen left branches alonzathe
4. Moveto S and traverse it left to right
5. Propose and accept NP (He)
Thus, the Hobbs algorithm suggests that for these sentences

He = He = John
it = a beautiful 1961 Ford Falcon

21.3 Hobbs (1977) cites the following examples from his corpuseisg problematic
for his tree-search algorithm:
(21.94) The positions of pillars in one hall were marked hbgrriboulders and a shaped
convex cushion of bronze that had served as tloeitings.

(21.95) They were at once assigned an important place arhergcainty remains
which record the physical developments of the human race fhe time of its
first appearance in Asia.
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(21.96) Sites at which the coarse grey pottery of the Shariggkas been discovered
do not extend far beyond the southernmost reach of the Yétlioer, or
westward beyond itginction with the Wei.

(21.97) The thin, hard, black-burnished pottery, made apsbk of angular profile,
which archaeologists consider as the clearest hallmatkeofting Shan
culture, developed in the east. The site from whidlakes its name is in
Shantung. Its traced to the north-east as far as Liao-ning province.

(21.98) He had the duty of performing the national sacriftodseaven and earth: his
role as source of honours and material rewards for servaratered by feudal
lords and ministers is commemorated in thousands of insmngmade by the
recipients on bronze vessels which were eventually degubsittheirgraves.

In each case, identify the correct referent of the undatlip@noun and the one
that the algorithm will identify incorrectly. Discuss angctors that come into
play in determining the correct referentin each case, amtiftes of information

that might be necessary to account for them.

The full Hobbs algorithm requires a person/number checlketah
NP proposed, and rejects ones that don’t match. Howevenitte
step process presented in Section 21.6 doesn’t includeltlisk, so
skipping the person/number check is permissable for thésoise.
The person/number check changes only one answer, as pounted
the response for (21.95).

21.94 The algorithm proposeser boulders and . .. bronzever boul-
ders the positionsand thenpillars (the correct response). Ex-
cluding the first two probably requires more knowledge of-con
joined noun phrases. Excludipgsitionsprobably requires rec-
ognizing thatpositionsdon’t havefootings

21.95 The algorithm proposéise physical developmerasd therthe
human racdthe correct response). Excluditige physical devel-
opmentscould be done using a number check, recognizing that
the singulaits should not refer to the pluralevelopments

21.96 The algorithm propos#se southernmost rea@nd therthe Yel-
low river (the correct response). Selectiing Yellow riverprob-
ably requires some recognition of the tendency for parsifeic-
tures in conjoined phrases.

21.97 For the firsit, the algorithm proposehke site Shantungpottery,
the eastangular profile the clearest hallmarkand finallythe
Lung Shan culturéthe correct response). Everything l8han-
tung could probably be excluded by recognizing tketing its
namerequires something with a proper namghantungcould
probably be excluded by recognizing that something cak# ta
its name from itself.

For the secondt, the algorithm proposebe site Shantung
and therit (the correct response). Excluding the first two proba-
bly involves recognizing thatulturesare traced, whilsitesand
Shantungsre not.
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21.98 The algorithm proposésonze vesselthousandsnd thenre-

cipients(the correct response). Excluding the first two probably
involves recognizing thdironze vesselsndthousandsypically
do not own graves.

21.4 Implement the Hobbs algorithm. Test it on a sample of the FeaaBank. You
will need to modify the algorithm to deal with differencestlween the Hobbs
and TreeBank grammars.

This is a challenging tree-walking problem. Some areas &hbgtra
care is needed:

In the Treebank, S can be expressed as S, SBAR, SINV, etc.
In the Treebank, there is no Nominal node, only NP nodes.
All node searches need to be breadth first, not depth first.

Left branches are searched left to right, even though whék wa
ing up the tree they are encountered from right to left.

The algorithm itself just proposes NP nodes, with the exaiart that
some nodes will be ruled out by gender, number, etc. To dgteszdl-
uate the algorithm on the TreeBank, some heuristics willdmeasary
to rule out obviously wrong candidates.

21.5 Consider the following passage, from Brennan et al. (1987):

(21.99)

Identify
sentenc
Discuss
inalized

Brennan drives an Alfa Romeo.
She drives too fast.

Friedman races her on weekends.
She goes to Laguna Seca.

the referent that the BFP algorithm finds for thergron in the final
e. Do you agree with this choice, or do you find the pl@ambiguous?
why introducing a new noun phrase in subject positith a pronom-
reference in object position might lead to an amitygfor a subject

pronoun in the next sentence. What preferences are corgpetie?

For the sentencBrennan drives an Alfa Romdé,), there are no
pronouns, so we simply have:

Cy(Ur): {Brennan, Alfa Romep
C,(U1): Brennan
Cy(U1): undefined

The sentenc&he drives too fastUs) has the pronouishe so we
have the two choices below. Since Continue is preferred taiRe

we

choose the first whefghe= Brennan

Cy(Ua): {Brennar}

Cp(Us): Brennan

Cy(Us): Brennan

Continue:Cy(Uz) = C,(Uz2) andC,(Un) is undefined
Cy(Us): {Alfa Romeg}

Cp(Us): Alfa Romeo

Cy(Us): Brennan

Retain:Cy,(Us) # Cp(Uz) andCy (U7 ) is undefined
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The sentencériedman races her on weeken@d$;) has the pronoun
her, but sinceC'y (Uz) = {Brennar, we must havéier= Brennan
C¢(Us): {Friedman, Brennan
Cy(Us): Friedman
Cy(Us): Brennan
Retain:Cy,(Us) # Cp(Us) andCy(Us) = Cy,(Us)
The sentenc&he goes to Laguna Secf@/4) has the pronoushe

so we have the two choices below. Since Continue is preféaed
Smooth-Shift, we choose the first wheé8he= Brennan

Cy(Uy): {Brennan, Laguna Seka

Cp(Ua): Brennan

Cy(Uy): Brennan

Continue:Cy(Uy) = C,(Uy) andCy,(Uy) = Cp(Us)
Cy(Uy): {Friedman, Laguna Sefa

Cp(Us): Friedman

Cy(Uy): Friedman

Smooth-Shift:Ob(U4) = Op(U4) andCb(U4) #+ Cb(Ug)
However, for many speakers, the firgthecan refer ta~riedman In
situations like this, there seems to be some competitiondmmt the
subject bias (i.e., the grammatical role hierarchy, whickfgrs to
refer back to the subjecEriedman), and Centering’s Continue bias
(which prefers to keep refering to the same per&annar).

21.6 Consider passages (21.100a-b), adapted from Winogra@)197

(21.100) The city council denied the demonstrators a pdratause

a. they feared violence.

b. they advocated violence.
What are the correct interpretations for the pronouns it e&ase? Sketch an
analysis of each in the interpretation as abduction framlewio which these

reference assignments are made as a by-product of establtble Explanation
relation.

The correct interpretations are:

a. they= city council

b. they= demonstrators
In order to reason about the reference assignments, we $ia-e
lish some basic rules corresponding to coherence relagiogsvorld
knowledge about permit denials:

(A) Ve, f explanatiofe, f) = coherence-rék, f)

(B) Ve, f causéf,e) = explanatiore, f)

(C) vf’a7 e? d? w? x?y?'z

fear(f, w,y) A advocatéa, x, y) A enablese, z, x, y)
= deny(d,w,z, z) A (causéf,d) V causéa, d))

Concluding thathey= city councilthen looks like:
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(1) denyd, Council DemonstratorsPermit) Given

(2) fear(f,they Violence Given

(3) coherence-rél, f) Assumed

(4) explanationid, f) Abduction: A, 3
(5) causéf,d) Abduction: B, 4
(6) fear(f,Council y) Abduction: C, 1,5

(7) fear(f,they= Councily = Violencg  Substitution: 2, 6
The derivation fothey= demonstratorsvorks in a similar manner.

21.7 Select an editorial column from your favorite newspaped determine the
discourse structure for a 10-20 sentence portion. Whatlgmebhdid you en-
counter? Were you helped by superficial cues the speakerded!(e.g., dis-
course connectives) in any places?

Assigning discourse structure is difficult and no two sa@os to this
problem are likely to be the same, even if they started withshme
text. Discourse connectives typically appear infrequerahd they
are often vague as to which relation they express.

One approach that might make assigning the relations dagier
follow the Penn Discourse TreeBank (Miltsakaki et al., 209dide-
lines and use discourse connectives themselves as thiemdktiels
instead of abstract relations like Elaboration or Backgrhu~or ex-
ample, abecauserelation would be assigned to the two sentences
below sincebecauseeads well when inserted between them:

Some have raised their cash positions to record levels.

[BecausgHigh cash positions help buffer a fund when the
market falls.
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Information Extraction

22.1 Develop a set of regular expressions to recognize the dearsicape features
described in Fig. 22.7.

import re

pattern_labels = {

rla-z]+$": ‘Lower’,

r'[A-Z][a-z]+$": "Capitalized’,

rA-Z]+$" 'All caps’,

r"[A-z] * [a-z]+[A-Z]+[a-z]+[A-Z] *". '"Mixed caps’,
r[A-z] * [A-Z]+[a-z]+[A-Z]+[A-Z] *'1 "Mixed caps’,
r[A-Z)\.$" 'Caps char with period’,
. ox\d$: 'Ends in digit’,

[ "Contains hyphen’

}

def shape(word):
for pattern, label in pattern_labels.items():
if re.match(pattern, word):
return label

22.2 Using a statistical sequence modeling toolkit of your climgpsdevelop and eval-
uate an NER system.

Good solutions to this problem should implement at leasfithEfive
features in Fig. 22.6, and include some sort of window ofufes for
each word classified. For evaluating systems, data for Spaarid
Dutch from the CoNLL 2002 competitions are freely availativdze:

http://www.cnts.ua.ac.be/conll2002/ner/
Of course, a variety of other named entity data sets coutdmdsised.

22.3 Thelos labeling scheme given in this chapter isn’t the only possidie. For
example, are tag might be added to mark the end of entities, orghag can
be reserved only for those situations where an ambiguistekietween adjacent
entities. Propose a new setiafB tags for use with your NER system. Exper-
iment with it and compare its performance with the schemegnted in this
chapter.

Some schemes that have been compared in the literature:

I0B1 B tags are only used between adjacent chunks

I0B2 B tags are used at the starts of all chunks

IOE1 Etags are only used between adjacent chunks

IOE2 Etags are used at the ends of all chunks

IOBES both starts and ends are marked, and single word
chunks get the tag

Tjong Kim Sang and Veenstra (1999) found tt@ 1 performed best,
while Kudo and Matsumoto (2001) found thats2 performed best.
In both cases however, the performance differences wete suuiall.
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22.4

22.5

22.6

Names of works of art (books, movies, video games, etc.) aite gifferent
from the kinds of named entities we've discussed in this tdragollect a list of
names of works of art from a particular category from a Webeldasource (e.g.,
gutenberg.org, amazon.com, imdb.com, etc.). Analyze lisuand give exam-
ples of ways that the names in it are likely to be problematiclie techniques
described in this chapter.

Titles of works of art look much more like regular languagarttthe
people, organizations, etc. discussed earlier. For exampl
e The Color Purple
e To Kill a Mockingbird
The Grapes of Wrath
Of Mice and Men
The Call of the Wild

In particular, titles include many more determiners angpsgtional
phrases, and often consist of common nouns instead of pnojpers.

Develop an NER system specific to the category of names thatglected in
the last exercise. Evaluate your system on a collectionxtfliteely to contain
instances of these named entities.
Good solutions to this problem will likely need to introduseme
new features that better characterize how these namesrappess.
It may also be necessary to increase the classifier windansaice
names of works of art are likely to be longer than names of lgeop
locations, etc.

Acronym expansion, the process of associating a phraseaniticronym, can
be accomplished by a simple form of relational analysis. dligy a system
based on the relation analysis approaches described irclthister to popu-
late a database of acronym expansions. If you focus on Englisee Letter
Acronyms (TLAS) you can evaluate your system’s performance by compatr
to Wikipedia’s TLA page.
A baseline approach to finding acronyms is to look for patidike:
Xxxxx Yyy Zzzzzz (XYZ)
These kinds of patterns can be matched with regular expresbke:
([A-Z]). =([A-ZDWw = \(\1[A-Z] =*\2\)
The expression above would match phrases like:
e Alternative Minimum Tax (AMT)
¢ International Foundation for Art Research (IFAR)
e LONDON INTERBANK OFFERED RATES (LIBOR)
However it would miss phrases like:
o diethylstilbestrol (DES)
e “world dollar base” (WDB)
e Bell Mueller Cannon Inc. (BMC)
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A more thorough solution to this problem would involve takiseed
acronyms like the ones found above, and using them in a lbaptst
ping approach to find additional acronym patterns.

Note that if Wikipedia’s TLA page is used for evaluation, iiflw
be necessary make sure that the TLA page is never used dheng t
bootstrapping process, or the evaluation will be invalid.

22.7 A useful functionality in newer email and calendar applimas is the ability to

22.8

22.9

associate temporal expressions connected with eventsdit @woctor’s appoint-
ments, meeting planning, party invitations, etc.) withdafie calendar entries.
Collect a corpus of email containing temporal expressieteted to event plan-
ning. How do these expressions compare to the kinds of esiprescommonly
found in news text that we've been discussing in this ch&pter

Some example temporal expressions from event planningemai
Sunday

June 23

Fri, Jul 25th - 8pm

coming Wednesday at 6:30 pm

Generally, the expressions look quite similar to the exgioes found
in news text, though informal expressions likeming Wednesday
are more frequent. In this sense, temporal expression ng@myis

a more constrained task than named entity recognition lsectne
forms do not change as dramatically across different gesfriet.

Develop and evaluate a recognition system capable of réziogriemporal ex-
pressions of the kind appearing in your email corpus.

A good baseline to compare the system against is the Tempgeita
a rule based system created by MITRE for newswire data:

http:/timex2.mitre.org/taggers/timex2_taggers.html
Performing better than TempEx will likely require a machiearn-

ing approach and/or identifying some types of temporal esgipns
common in email data that are missed by TempEXx.

Design a system capable of normalizing these expressidhe ttegree required
to insert them into a standard calendaring application.

The bulk of the work for this solution is in creating rules timaap
natural language words into numeric temporal represemstiEven
for fully qualified absolute times, this is a complex task lzare are
many ways of expressing the same time, e.g.

e January 25th, 2007 at 2:00pm

e at 14:00 on Jan 25 2007

e 2007-01-2514:00:00
For times that are not fully specified, some temporal aritticneill
be necessary, though in most cases, it should be possibgstiona
that events will be scheduled later than their email’s date.
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22.10 Acquire the CMU seminar announcement corpus and develapplate-filling
system by using any of the techniques mentioned in Sectioh Zhalyze how

well your system performs as compared with state-of-theeaults on this cor-
pus.

A good summary of state of the art results is available intjRiesand
Pfefer, 2003). The features used by the best models are pnatth
the same as the features presented in Fig. 22.6, so one abéson
approach to this problem is simply to retrain the system lbgesl in
Exercise 22.2 using the new label set.

22.11 Given your corpus, develop an approach to annotating tiegaet slots in your
corpus so that it can serve as a training corpus. Your apprsiaguld involve
some hand-annotation but should not be based solely on it.

The goal of this problem was to investigate the construatioen cor-
pus useful for template-filling tasks. The intent was thatents
would come up with an idea for a template, find documentsyikel
to instantiate that template, and then annotate each daddorehe
slot-fillers of that template.

One approach to reduce the amount of hand-annotation weuld b
to build a simple rule based template-filling system first tat on
the data, and then hand correct all of the outputs. For thisogeh to
work, a system with a relatively high precision (probablyte cost
of recall) is usually necessary.

22.12 Retrain your system and analyze how well it functions on yww domain.

The intent of this problem was for students to retrain theinplate-
filing models created in Exercise 22.10 on the new data edet
Exercise 22.11.

Since only a small amount of data is likely to be produced in Ex
ercise 22.11, performance on this data is likely to be muatetdhan
performance on the CMU seminar announcement corpus utiless t
new template selected was particularly easy. If there ayeshis
in common with the CMU seminar announcement corpus, it may be
possible to gain some performance by combining the two detea s
and training on both.

22.13 Species identification is a critical issue for biomedicdbimation extraction
applications such as document routing and classificationt itBs especially
crucial for realistic versions of the gene normalizatioalgem.

Build a species identification system that works on the danirevel, using the
machine learning or rule-based method of your choice. Us8ibCreative gene

normalization datakijocreative.sourceforge.net ) as gold-standard
data.

The goal of species identification is, given a passage of éiboal
text about an organism, to identify the species of the oggarieing
described. The best beginning to a successful solutiongg@tbblem
is to start with a document set in which documents are likelgave



98 Chapter 22.

Information Extraction

only a single species mentioned. This is often not the case-stdy
found that over 70% of documents in the set mentioned moredha
species. This is more of a problem with full-text journal@es than
it is with abstracts. The BioCreative data is a good starpfipmt
because itis all abstracts and it tends to have single-spabistracts.
It is also artificially easy in that the number of species ruad
is only four (if you combine the BioCreative | and BioCreatill
collections) — realistic text collections may mention tefispecies.

For the BioCreative data sets, rule-based and machineihegar
based systems should both work well; a simple Bayesianifitass
likely to suffice, as would a simple rule-based method thanted
mentions of species names and assigned the most-mentipecids
to the document.

Note that document-level classification is an unrealifiticzasy
task, although it is a good one for students who would berreiih f
building a simple classifier with a BOW feature set. The raaktis
to do classification at the level of the individual entity rtien within
the documentmouseor yeast

22.14 Build, or borrow, a named entity recognition system thagjéss mentions of

genes and gene products in texts. As development data, edgidCreative
gene mention corpu$ipcreative.sourceforge.net ).

There are a number of publicly available systems. The ABNIER s
tem (http://pages.cs.wisc.edu/ ~ bsettles/abner/ ), is one
the most nicely engineered and probably the easiest to tisis &ine.
To build an NER system, the easiest approach to take withithere-
ative corpus is to treat it as a POS tagging problem with a GENE
since that is how the data is represented — all tokens aretBgfed,
except for tokens which are part of gene names — they are dagge
GENE. Most imaginable machine-learning-based methods bagn
tried; see the proceedings of either of the two BioCreatieetings
for lots of suggestions on feature sets. Note that dictiphased
methods tend to perform quite poorly.

22.15 Build a gene normalization system that maps the output of gene mention

recognition system to the appropriate database entry. tésBibCreative gene
normalization data as your development and test data. Beysur don't give
your system access to the species identification in the raitad

While gene normalization can be thought of as a word sensendis
biguation (WSD) task, it differs from traditional WSD tasksthat
there are often many different realizations of each gemg, ®8ma-
totropin and growth hormoneboth refer to the same biomolecule.
Thus, unlike traditional WSD tasks, where the possible egis be
assigned can simply be looked up in a dictionary, in gene abtrax
tion, a large part of the task is finding which entries in thetidnary
might be relevant.
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Gene normalization is mostly an unsolved problem, and eesitud
who does well on it is likely to have a publishable paper orirthe
hands. For one very recent system that has tackled thiserobh
the BioCreative data, see Wang and Matthews (2008). Theik wo
got the best results from a hybrid system that did an initedspwith
a machine-learning-based system and then used a rule-bpsted
for post-processing.
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Question Answering
and Summarization

23.1 Pose the following queries to your favorite Web search engin

Who did the Vice President kill?
Who killed the former Treasury Secretary?

Do an error-analysis on the returned snippets and pagest afhthe sources of
the errors? How might these errors be addressed by a moliegerte question-
answering system?

In recent results from Google, the best hit Who did the Vice Pres-
ident kill is the second one, which contains a paragraph about Vice
President Aaron Burr shooting the former Secretary of thea3ury
Alexander Hamilton. This is a reasonable response, butssesi the
fact thatthe Vice Presidernprobably refers to the current one. Giving
a better answer would likely require a better understandfrdpter-
miners likethe

The best hits fowho killed the former Treasury Secretaaye
probably the third and fourth, which refer to an internet sjiracy
theory that Treasury Secretary Henry Paulson was shot #iad kiy
assassins of Putin. This is bad because at the time of thg, dilery
Paulson was the current Treasury Secretary (and still'alivet the
former Treasury Secretary. Giving a better answer would likely re-
quire a better understanding of temporal terms fikener (and per-
haps a better recognition of dubious conspiracy theories).

For both questions, many of the remaining hits seem to beatisc
laneous combinations of the words in the query, e.g., soraashry
Secretary and someone else being killed, but no particelation be-
tween the two. Getting better responses here would reqckeoavl-
edging the predicate-argument structure of the questidrirgimg to
better match that in the response, probably using one ofimastic
role labeling techniques introduced in Chapter 20.

23.2 Do some error analysis on Web-based question answeringagehd® questions
and type them all into two different search engines. Analyweerrors. For
example, what kinds of questions could neither system arts\Mihich kinds of
guestions did one work better on? Was there a type of quesitaircould be
answered just from the snippets?

The goal of this problem is to get a sense of the limitationseafrch
engines, as well as the differences between different seamgine
implementations. Since most search engines are basedlir &ri-
ants of the same vector space models, while the individusaldre
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likely to be different, the basic kinds of errors are liketylie simi-
lar. For example, the problems with predicate-argumeuntgire we
saw in the preceding exercise are likely to be problems focwat
rent search engines, though the exact hits returned arly likebe
different.

23.3 Read Brill et al. (2002). Implement a simple version of th&M$R system.

The basic approach of the AskMSR system is to convert questio
into declarative phrases, use phrasal searches to findphogses on
the web, and then search for n-grams that occur near thegshiras
the hits returned. An implementation of AskMSR would prolgab
include the following steps:
1. Rewrite the query in a declarative form, eMyhen was the paper
clip inventeds rewritten asThe paper clip was invented
2. Using a phrasal search engine, find hits containing theittew
query phrase.
3. Using only the summaries returned by the search engitr@ogx
unigrams, bigrams and trigrams around the matched phrase.
4. Find the unigrams, bigrams and trigrams that appearetden t
largest number of summaries.
5. Analyze the query’s expected answer type and filter n-grtat
would be inappropriate.
6. Assemble the longest possible answer by starting wittbést
scoring n-gram and tiling other n-grams onto it, e.g., coniny
A B CandB C DintoA B C D
The full version of AskMSR includes a little more detail (g.gro-
ducing several query rewrites with different scores), i dbove
steps capture the core ideas of the approach.

23.4 Apply the system you developed for the last question to alsiclaked, set of
Web pages of interest. For example, you could use the sepefsthat describe
the undergraduate degree and course requirements at agityividow does the
restriction to a small collection affect the performancéhef system?

Systems like the AskMSR system rely on the massive reduiydznc
corpora like the web
e to be able to find full phrasal matches, since only with a large
number of documents can we expect the exact query phrase to
occur, and
e to be able to score and tile the n-grams, since we need a large
number of responses to calculate meaningful n-gram frequen
cies.
As a result, using a system like the AskMSR system on a smigdLso
is likely to see a substantial drop in performance.
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Dialogue and Conversational Agents

24.1 List the dialogue act misinterpretations in téo’s on Firstroutine at the be-
ginning of the chapter.

C: | want you to tell me the names of the fellows on the St Louis

team.
A: I'mtelling you. Who's on first, What's on second, | Don’'t Know
is on third.

Intended: STATEMENT
Understood: QUESTION
You know the fellows’ names?
Yes.
Well, then, who's playing first?
Intended: QUESTION
Understood: CHECK
Yes.
I mean the fellow’s name on first.
Who.
Intended: STATEMENT
Understood: QUESTION
C: The guy on first base.
A: Whois on first.
Intended: STATEMENT
Understood: QUESTION
C: Well what are you askin’ me for?
A: I'm not asking you — I'm telling you. Who is on first.

O*0

0%

24.2 Write a finite-state automaton for a dialogue manager focking your bank
balance and withdrawing money at an automated teller machin

One possible solution:

Insert your card

cancel
cancel

[Make a withdrawal or Check your balance? ]

withdrawal balance

[Type the amount to withdraw] [Your balance is <BAL>]
Dispense <AMT> in cash /
Print receipt
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24.3

24.4

24.5

Dispreferred responses (e.g., turning down a request) aually signaled by
surface cues such as significant silence. Try to notice tkEtinge you or some-
one else utters a dispreferred response, and write dowrttérance. What are
some other cues in the response that a system might use t detispreferred
response? Consider non-verbal cues like eye gaze and betlyeg

The question is ambiguous, but the intent was to ask for bethal
and non-verbal cues. Verbal cues include pauses, fillexsvdtl, dis-
fluencies or self-repair, apologies or qualifications, détmn-verbal
cues include a lowered gaze, changes in facial expresg&®ifréwn-
ing (or even smiling), gestures like a raised hand, etc.

When asked a question to which they aren’t sure they know tisever, peo-
ple display their lack of confidence by cues that resembleradispreferred re-
sponses. Try to notice some unsure answers to questiond. aMhsome of the
cues? If you have trouble doing this, read Smith and Clarl@8)%nd listen
specifically for the cues they mention.

Some cues for unsure answers identified by Smith and Claf3(19

e Long pauses

Rising intonation
Hedges likd guessor | think
Fillers like uh, um, tongue clicks, whistling or sighing

Build a VoiceXML dialogue system for giving the current timeund the world.
The system should ask the user for a city and a time format ¢24, letc) and
should return the current time, properly dealing with tinoees.

Initial VoiceXML prompts for the user might look like:

<?xml version="1.0" ?>
<vxml version="2.0">
<form>
<field name="city">
<prompt>
What city would you like the time for?
</prompt>
<grammar type="application/x-nuance-gsl">
[denver (san francisco) ...]
</grammar>
<[field>
<field name="format">
<prompt>
Twelve hour or twenty four hour clock?
</prompt>
<grammar type="application/x-nuance-gsl">
[twelve (twenty four)] ?hour]
</grammar>
</[field>
</form>
<block>
<submit next="http://example.com/get-time"/>
</block>
</vxml>

This script would submit the fieldsty andformat to the server
at http://example.com/get-time . The server would need
to look up the the current time for the city, and return Void&Xlike
the following, withCity andTime filled in with appropriate values:
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<?xml version="1.0" ?>
<vxml version="2.0">
<block>
<prompt>
The time in [City] is [Time]
</prompt>
</block>
<fvxml>
24.6 Implementa small air-travel help system based on text ingauir system should
get constraints from users about a particular flight thay thant to take, ex-
pressed in natural language, and display possible flightssmmeen. Make sim-
plifying assumptions. You may build in a simple flight datab@r you may use

a flight information system on the Web as your backend.
This is a challenging problem that requires at least:
e A parser component that extracts slots l#®IGIN andDESTI-
NATION from natural language text.
¢ A dialog management component that prompts the user for addi
tional information when necessary.
e A database component that translates the requested smegpin
propriate database queries.
e A generation component that presents the flights retriexad f
the database to the user.
One of the key goals of this exercise is to help develop a bettger-
standing of how each of these components interact with e#iwdr,o
and what the most important points of integration are.

24.7 Augment your previous system to work with speech input tghouoiceXML.
(Or alternatively, describe the user interface changeswaud have to make for
it to work via speech over the phone.) What were the majoedtfices?

Some of the biggest changes for a phone-based interfacel\weuh
the generation component. When visualizing flight inforiovabn a
screen, tables can be used to display a lot of informatiomlsime-
ously. Over the phone, the same information must be giveristing
everything would overwhelm most users. Thus, the outpuégeion
will need better integration with the dialog managementimaathe
user to verbally browse the flights by date, time of day, airpic.

Of course, other areas of the system will also need adaptatio
e.g., errors in speech recognition make the informatiomaekbn
more difficult, as a result requiring greater interactiotivthe user to
verify words when uncertain.

24.8 Design a simple dialogue system for checking your email ¢ertelephone.
Implement in VoiceXML.

This exercise shares many of the challenges of Exercise tbdigh
the grammar the parser must understand may be somewhagesimpl
and much of the generation will simply be reading text. Goold-s
tions to this problem will allow actions like checking formenes-
sages, reading a message aloud, advancing to the next mgsgag
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24.9 Test your email-reading system on some potential users.osehsome of the
metrics described in Section 24.4.2 and evaluate yourmsyste

Most of the evaluation metrics require that the users attesome
sort of task. Good tasks to evaluate the email-readingsystelude
reading the most recent email, scanning for an email withrécodar
title, etc. To get a good feel for how effective each of theetypf
metrics are, it would be best to use at least one metric each the
task completion metrics, the efficiency cost metrics andaiality

cost metrics.



Chapter 25 |
Machine Translation

25.1 Select at random a paragraph of Chapter 12 that describes abfaut English
syntax. a) Describe and illustrate how your favorite fondimnguage differs in
this respect. b) Explain how an MT system could deal with difference.

For example, the rule:
NP — (Det)(Card)(Ord)(Quan(AP)Nominal
is wrong since in Spanish adjectives usually follow nourt., e

la manzana roja
THE APPLE RED
Det Noun Adj

Particularly when the word is a simple adjective (and notraglad-
jectival phrase), an MT system could address this diffezemith a
simple reordering strategy that put adjectives after nouns

25.2 Choose a foreign language novel in a language you know. Copy the short-
est sentence on the first page. Now look up the rendition dfsinatence in an
English translation of the novel. a) For both original arahsiation, draw parse
trees. b) For both original and translation, draw depenglstractures. c) Draw
a case structure representation of the meaning that thaalrignd translation
share. d) What does this exercise suggest to you regardiegriadiate repre-
sentations for MT?

From Don Quixote (frongutenberg.org  ):

a) Syntactic trees
S
T T
PP NP VP

Over NP the poor gentlemarlost NP

conceits of this sort his wits
S
/\
PP VP
T T —

Con NP perdia NP NP

estas razones el pobre caballeroel juicio
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b) Dependency trees

lost perdia
T —
over gentlemanwits con caballero juicio
N | VN |

conceits the poor his razones el pobre el

of this sort estas

c¢) Case structures
lost

REASON EXPERIENCER THEME

over conceits of this sorthe poor gentlemarhis wits

perdia
— N
REASON EXPERIENCER THEME

Con estas razonesl pobre caballeroel juicio

d) Translating between dependency trees or case role egpadions
looks relatively straightforward, while translating betwn syntactic
parses would require some additional work since the sulnjeah
phrase is before the verb in English but after the verb in 8pan
Of course, this same problem would arise for the dependerey t
or case role representations when converting the wordsitréle to
their final ordered output.

25.3 Version 1 (for native English speakers): Consider the fithg sentence:

These lies are like their father that begets them; gross asuatain, open,
palpable. Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern vetaaEunglish, such as
the style of aNew York Time®ditorial, anEconomistopinion piece, or your
favorite television talk-show host.

Version 2 (for native speakers of other languages): Tramstee following sen-
tence into your native language.

One night my friend Tom, who had just moved into a new apartisaw
a cockroach scurrying about in the kitchen.

For either version, now:

a) Describe how you did the translation: What steps did yofopm? In what
order did you do them? Which steps took the most time?
One possible approach would be to perform a multi-stagedira
lation. First, do a simple word-by-word translation. (Nttat in
the process, we lose the pun gimss which could mean botfat
andobvious)
These lies are like the man who gave birth to them: obvious
as a mountain, open, blatant.
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Next remove the somewhat stilted metaphor:

These lies are like the man speaking them: obvious as a
mountain, open, blatant.

Then condense some redundancies:

These lies are like the man speaking them: blatant and obvi-
ous.

Finally, reorder phrases to use the more comm®nX as con-
struction:

These lies are as blatant and obvious as the man speaking
them.

The major time sink of this approach is not in any given step,
but in deciding which steps to apply and in what order, thanis
planning the translation strategy.

b) Could you write a program that would translate by the sarathods that
you did? Why or why not?
Some of these steps would be quite difficult to do automayical
For example, automatically detecting metaphors is an uedol
problem, and having to translate them into non-metaphpegesh
would make the problem even more difficult.

¢) What aspects were hardest for you? Would they be hard fsfTasystem?

One of the difficulties was in recognizing that the X as con-
struction was a more natural way of expressing the sentdinig.
would likely be difficult for an MT system was well, since this
construction is not all that frequent, and the translatiequires
some substatial phrase movements.

d) What aspects would be hardest foran MT system? Are thelfoapeople
too?
Removing the metaphor would be extremely hard for an MT sys-
tem to do unless thgave birthispeakingmetaphor is for some
reason very common in the training corpus.

e) Which models are best for describing various aspects wf gmcess (di-
rect, transfer, interlingua, or statistical)?

The approach given here is a combination of a couple difteren
models: the word-by-word translation was like a direct mpde
while the phrase reorderings were more like a transfer model

f) Now compare your translation with those produced by filiewr class-
mates. What is different? Why were the translations diff€ze

Translations by others are likely to be fairly differentrtpaularly

if the others aimed for a different genre to translate toegtigat-
ing the differences should give some idea of where in thege®c
alternate decisions could have been made, and how suclioufscis
would have influenced the final result.
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25.4 Type a sentence into any MT system and see what it outputsstahke problems
with the translation. b) Rank these problems in order of sgves) For the two
most severe problems, suggest the probable root cause.

Using Google Translate in 2008:

Input Mary did not slap the green witch.
Output  Maria no bofetada la bruja verde.
Expected Maria no dio una bofetada a la bruja verde.

There are three words missing in the Spanish translatiitoy: una
anda. Probably the most significant oned® - in Spanish, you must
give a slap you cannot uselap as a verb. Note that withoutio,
there is no verb in the sentence, so this is a pretty serigos arhe
other major error is the missing which indicates that the slap is
being givento the witch. This error is related to the missidp as
well - una bofetadashould be the only object afio, but sincedio
was missing, there was no way to guess that. In both cases\dake
likely root cause is the fact that none of the missing wordtgnato
any of the English words.

25.5 Build a very simple, direct MT system for translating frorms® language you
know at least somewhat into English (or into a language inrctvlyiou are rel-
atively fluent), as follows. a) First, find some good test seoés in the source
language. Reserve half of these as a development test ddialiras an unseen
test set. Next, acquire a bilingual dictionary for these tarmguages (for many
languages, limited dictionaries can be found on the Webwlihbe sufficient
for this exercise). Your program should translate each vioyrdboking up its
translation in your dictionary. You may need to implemennsostemming or
simple morphological analysis. b) Next, examine your otjtpnd do a prelim-
inary error analysis on the development test set. What aentijor sources of
error? ¢) Write some general rules for correcting the tetish mistakes. You
will probably want to run a part-of-speech tagger on the Bshgbutput, if you
have one. d) Then see how well your system runs on the test set.

There are likely to be two major sources of errors in thesgkm
dictionary based MT systems: selecting the wrong words faitidg
to change the word order. Correcting the word selection Iprob
will likely require WSD-like methods, e.g., looking for keyprds in
the surrounding context. Correcting the word order prolslemil
likely require reordering rules that move words or phragsesitad,
e.g., moving adjectives after the nouns instead of befamth
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25.6 Continue the calculations for the EM example on page 887Topaing the sec-

ond and third round of E-steps and M-steps.

E-step 2a Recompute’(a

, fle) by multiplying ¢ probabilities:

green house green house the house the house
casa verde casa verde la casa la casa
P(a, fle) P(a, fle) P(a, fle) P(a, fle)
= t(casagreer) x =t(verdg greenx = t(la,the)x = t(casathe) x
t(verde house) t(casahousg t(casahouse t(la, house
1 1
=3X31=3 =3x3=g =3X3=1% =3X;=3
E-step 2b NormalizeP(a, f|e) to getP(ale, f):
green house green house the house the house
casa verde casa verde la casa la casa
P(alf,e) P(alf,e) P(alf,e) P(alf,e)
_1/8 _ 1 _1/4 _ — /4 _ 2 —1/8 _1
—3/8 3 —3/8 " 3 —3/8 — 3/8

E-step 2c  Compute expected counts by weighting each counPtyje, f):

tent(casagreen) = % tent(verddgreen = % tent(lajgreer) = 0 |total(green) = 1
tent(casahousg = §+§ tent(verdghousg = % tent(lajhousg = % total(house) = 1
tent(casathe) = 1 tent(verdgthe) = 0 |tent(lalthe) = 2 |total(the) = 1

M-step 2 Compute MLE probability parameters by normalizing the tasu

t(casdgreen = 1{3 = L |t(verddgreen = 2{3 = 2 |t(lajgreen = 2 =0
t(casghousg = 2 = Zly(verdghousy = /2 = 1|t(lajhousy = 2 = 1
_ 1/3 _ 1 - 0 = - 2/3 _ 2
t(casathe) = -~ = 3 |t(verddthe) = 1 = 0/[¢(lajthe) = = %
E-step 3a RecomputeP(a, f|e) by multiplyingt probabilities:
green house green house the house the house
casa verde casa verde la  casa la casa
P(a, fle) P(a, fle) P(a, fle) P(a, fle)
= t(casagreern) x = t(verde greer) x = t(la, the) x = t(casathe) x
t(verde house) t(casahousg t2(casa hou4se t(la, housg
1 1 1
=5X5=1 =3x3=3% =ix%=3 =3X5=1s
E-step 3b NormalizeP(a, f|e) to getP(ale, f):
green house green house the house the house
casa verde casa verde la casa la casa
P(alf,€) P(alf,e€) P(alf,e) P(alf,e)
—1/18 _ 1 _ 49 _ 8 49 _ 8 =118 _ 1
—1/2 T 9 —1/2 7 9 1/2 9 —1/2 T 9
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E-step 3c  Compute expected counts by weighting each courPfyje, f):

tcnt(casagreen) = % tent(verddgreen = % tent(lajgreer) = 0 |total(green) = 1
tent(casghousg = § + 3 |tent(verdghousg = § |tent(lajhousg = } |total(house) = 2
tent(casathe) = % tent(verdgthe) = 0 |tent(lajthe) = % totaltthe) = 1

M-step 3 Compute MLE probability parameters by normalizing the taisu
/9 8/9 _

t(casdgreen = == = & |t(verddgreen = == = 3 |i(lajgreen = & = 0
t(casdhousg = % = 3 |t(verdghousg = % = 15 |t(lajhousg = % = &
t(casdthe) = ilg = 1|t(verddthe = 9 = 0 [t(lathe) = % =3

(Derived from Knight (1999b)) How many possible Model 3 aligents are there
between a 20-word English sentence and a 20-word Spaniginsen allowing
for NULL and fertilities?

Just like in Model 1, every Spanish word is aligned NULL orragée
Englishword. Since the word fertilities are constrained to be anon-
negative numbers, and we have 20 Spanish words to genevate fr
our English words, we hawe < ¢; < 20. And since we can generate
zero or one spurious Spanish words for each of our 20 Englistsy
we have) < ¢g < 20.

Sojust as with Model 1, we calculate the total possible afignts
by choosing for each of our 20 Spanish words one of the 20 Emgli
words or NULL. Thus the total possible alignments is:

2120 = 278,218, 429, 446, 951, 548, 637, 196, 401

Note however, that if we could guarantee that g@urvalues were
smaller than 20, we could have a smaller total number of ptessi
alignments.
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