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Preface
This Instructor’s Solution Manual provides solutions for the end-of-chapter exer-

cises inSpeech and Language Processing: An Introduction to NaturalLanguage Pro-
cessing, Computational Linguistics, and Speech Recognition (Second Edition). For
the more interactive exercises, or where a complete solution would be infeasible (e.g.,
would require too much code), a sketch of the solution or discussion of the issues
involved is provided instead. In general, the solutions in this manual aim to provide
enough information about each problem to allow an instructor to meaningfully evaluate
student responses.

Note that many of the exercises in this book could be solved ina number of different
ways, though we often provide only a single answer. We have aimed for what we
believe to be the most typical answer, but instructors should be open to alternative
solutions for most of the more complex exercises. The goal isto get students thinking
about the issues involved in the various speech and languageprocessing tasks, so most
solutions that demonstrate such an understanding have achieved the main purpose of
their exercises.

On a more technical note, throughout this manual, when code is provided as the
solution to an exercise, the code is written in the Python programming language. This
is done both for consistency, and ease of comprehension - in many cases, the Python
code reads much like the algorithmic pseudocode used in other parts of the book. For
more information about the Python programming language, please visit:

http://www.python.org/

The code in this manual was written and tested using Python 2.5. It will likely work on
newer versions of Python, but some constructs used in the manual may not be valid on
older versions of Python.
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Hobbs, Kevin Knight, Peter Norvig, Martha Palmer, Bo Pang, Ted Pedersen, Martin
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Chapter 2
Regular Expressions and Automata

2.1 Write regular expressions for the following languages. Youmay use either
Perl/Python notation or the minimal “algebraic” notation of Section 2.3, but
make sure to say which one you are using. By “word”, we mean an alphabetic
string separated from other words by whitespace, any relevant punctuation, line
breaks, and so forth.

1. the set of all alphabetic strings;
[a-zA-Z]+

2. the set of all lower case alphabetic strings ending in ab;
[a-z] * b

3. the set of all strings with two consecutive repeated words(e.g., “Humbert
Humbert” and “the the” but not “the bug” or “the big bug”);

([a-zA-Z]+)\s+\1

4. the set of all strings from the alphabeta, b such that eacha is immediately
preceded by and immediately followed by ab;

(b+(ab+)+)?

5. all strings that start at the beginning of the line with an integer and that end
at the end of the line with a word;

ˆ\d+\b. * \b[a-zA-Z]+$

6. all strings that have both the wordgrotto and the wordravenin them (but
not, e.g., words likegrottosthat merelycontainthe wordgrotto);

\bgrotto\b. * \braven\b|\braven\b. * \bgrotto\b

7. write a pattern that places the first word of an English sentence in a register.
Deal with punctuation.

ˆ[ˆa-zA-Z] * ([a-zA-Z]+)

2.2 Implement an ELIZA-like program, using substitutions suchas those described
on page 26. You may choose a different domain than a Rogerian psychologist,
if you wish, although keep in mind that you would need a domainin which your
program can legitimately engage in a lot of simple repetition.

The following implementation can reproduce the dialog on page 26.
A more complete solution would include additional patterns.
import re, string

patterns = [
(r"\b(i’m|i am)\b", "YOU ARE"),
(r"\b(i|me)\b", "YOU"),
(r"\b(my)\b", "YOUR"),
(r"\b(well,?) ", ""),
(r". * YOU ARE (depressed|sad) . * ",

r"I AM SORRY TO HEAR YOU ARE \1"),
(r". * YOU ARE (depressed|sad) . * ",

r"WHY DO YOU THINK YOU ARE \1"),

1



2 Chapter 2. Regular Expressions and Automata

(r". * all . * ", "IN WHAT WAY"),
(r". * always . * ", "CAN YOU THINK OF A SPECIFIC EXAMPLE"),
(r"[%s]" % re.escape(string.punctuation), ""),

]
while True:

comment = raw_input()
response = comment.lower()
for pat, sub in patterns:

response = re.sub(pat, sub, response)
print response.upper()

2.3 Complete the FSA for English money expressions in Fig. 2.15 as suggested in the
text following the figure. You should handle amounts up to $100,000, and make
sure that “cent” and “dollar” have the proper plural endingswhen appropriate.

2.4 Design an FSA that recognizes simple date expressions likeMarch 15, the 22nd
of November, Christmas. You should try to include all such “absolute” dates
(e.g., not “deictic” ones relative to the current day, likethe day before yesterday).
Each edge of the graph should have a word or a set of words on it.You should
use some sort of shorthand for classes of words to avoid drawing too many arcs
(e.g., furniture→ desk, chair, table).
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2.5 Now extend your date FSA to handle deictic expressions likeyesterday, tomor-
row, a week from tomorrow, the day before yesterday, Sunday, next Monday,
three weeks from Saturday.

2.6 Write an FSA for time-of-day expressions likeeleven o’clock, twelve-thirty, mid-
night, or a quarter to ten, and others.

2.7 (Thanks to Pauline Welby; this problem probably requires the ability to knit.)
Write a regular expression (or draw an FSA) that matches all knitting patterns
for scarves with the following specification:32 stitches wide, K1P1 ribbing on
both ends, stockinette stitch body, exactly two raised stripes. All knitting patterns
must include a cast-on row (to put the correct number of stitches on the needle)
and a bind-off row (to end the pattern and prevent unraveling). Here’s a sample
pattern for one possible scarf matching the above description:1

1 Knit andpurl are two different types of stitches. The notation Kn means don knit stitches. Similarly for
purl stitches. Ribbing has a striped texture—most sweatershave ribbing at the sleeves, bottom, and neck.
Stockinette stitch is a series of knit and purl rows that produces a plain pattern—socks or stockings are knit
with this basic pattern, hence the name.
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1. Cast on 32 stitches. cast on; puts stitches on needle
2. K1 P1 across row (i.e., do (K1 P1) 16 times).K1P1 ribbing
3. Repeat instruction 2 seven more times. adds length
4. K32, P32. stockinette stitch
5. Repeat instruction 4 an additional 13 times.adds length
6. P32, P32. raised stripe stitch
7. K32, P32. stockinette stitch
8. Repeat instruction 7 an additional 251 times.adds length
9. P32, P32. raised stripe stitch

10. K32, P32. stockinette stitch
11. Repeat instruction 10 an additional 13 times.adds length
12. K1 P1 across row. K1P1 ribbing
13. Repeat instruction 12 an additional 7 times.adds length
14. Bind off 32 stitches. binds off row: ends pattern

In the expression below,C stands forcast on, K stands forknit, P
stands forpurl andB stands forbind off:

C{32}
((KP){16})+
(K{32}P{32})+
P{32}P{32}
(K{32}P{32})+
P{32}P{32}
(K{32}P{32})+
((KP){16})+
B{32}

2.8 Write a regular expression for the language accepted by the NFSA in Fig. 2.26.

q3q0 q1 q2

a b a

b
a

Figure 2.1 A mystery language.

(aba?)+

2.9 Currently the functionD-RECOGNIZE in Fig. 2.12 solves only a subpart of the
important problem of finding a string in some text. Extend thealgorithm to solve
the following two deficiencies: (1)D-RECOGNIZE currently assumes that it is
already pointing at the string to be checked, and (2)D-RECOGNIZE fails if the
string it is pointing to includes as a proper substring a legal string for the FSA.
That is,D-RECOGNIZEfails if there is an extra character at the end of the string.

To address these problems, we will have to try to match our FSAat
each point in the tape, and we will have to accept (the currentsub-
string) any time we reach an accept state. The former requires an
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additional outer loop, and the latter requires a slightly different struc-
ture for our case statements:

function D-RECOGNIZE(tape,machine) returns accept or reject
current-state← Initial state of machine
for indexfrom 0 to LENGTH(tape) do

current-state← Initial state of machine
while index< LENGTH(tape) and

transition-table[current-state,tape[index]] is not emptydo
current-state← transition-table[current-state,tape[index]]
index← index+ 1
if current-stateis an accept statethen

return accept
index← index+ 1

return reject

2.10 Give an algorithm for negating a deterministic FSA. The negation of an FSA
accepts exactly the set of strings that the original FSA rejects (over the same
alphabet) and rejects all the strings that the original FSA accepts.

First, make sure that all states in the FSA have outward transitions for
all characters in the alphabet. If any transitions are missing, introduce
a new non-accepting state (thefail state), and add all the missing
transitions, pointing them to the new non-accepting state.

Finally, make all non-accepting states into accepting states, and
vice-versa.

2.11 Why doesn’t your previous algorithm work with NFSAs? Now extend your al-
gorithm to negate an NFSA.

The problem arises from the different definition of accept and reject
in NFSA. We accept if there is “some” path, and only reject if all
paths fail. So a tape leading to a single reject path does neccessarily
get rejected, and so in the negated machine does not necessarily get
accepted.

For example, we might have anε-transition from the accept state
to a non-accepting state. Using the negation algorithm above, we
swap accepting and non-accepting states. But we can still accept
strings from the original NFSA by simply following the transitions as
before to the original accept state. Though it is now a non-accepting
state, we can simply follow theε-transition and stop. Since theε-
transition consumes no characters, we have reached an accepting state
with the same string as we would have using the original NFSA.

To solve this problem, we first convert the NFSA to a DFSA, and
then apply the algorithm as before.



Chapter 3
Words and Transducers

3.1 Give examples of each of the noun and verb classes in Fig. 3.6,and find some
exceptions to the rules.

Examples:

• nouni: fossil

• verbj: pass

• verbk: conserve

• nounl: wonder

Exceptions:

• nouni: apologyaccepts-izebutapologizationsounds odd

• verbj: detectaccepts-ivebut it becomes a noun, not an adjective

• verbk: causeaccepts-ativebut causitivenesssounds odd

• nounl: armaccepts-ful but it becomes a noun, not an adjective

3.2 Extend the transducer in Fig. 3.17 to deal withsh andch .

One possible solution:

6
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3.3 Write a transducer(s) for the K insertion spelling rule in English.

One possible solution:

3.4 Write a transducer(s) for the consonant doubling spelling rule in English.

One possible solution, where V stands for vowel, and C standsfor
consonant:

3.5 The Soundex algorithm (Knuth, 1973; Odell and Russell, 1922) is a method
commonly used in libraries and older census records for representing people’s
names. It has the advantage that versions of the names that are slightly misspelled
or otherwise modified (common, e.g., in hand-written censusrecords) will still
have the same representation as correctly spelled names. (e.g., Jurafsky, Jarofsky,
Jarovsky, and Jarovski all map to J612).

1. Keep the first letter of the name, and drop all occurrences of non-initial a,
e, h, i, o, u, w, y.

2. Replace the remaining letters with the following numbers:
b, f, p, v→ 1
c, g, j, k, q, s, x, z→ 2
d, t→ 3
l → 4
m, n→ 5
r→ 6

3. Replace any sequences of identical numbers, only if they derive from two or
more letters that wereadjacentin the original name, with a single number
(e.g., 666→ 6).

4. Convert to the formLetter Digit Digit Digit by dropping digits
past the third (if necessary) or padding with trailing zeros(if necessary).

The exercise: write an FST to implement the Soundex algorithm.
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One possible solution, using the following abbreviations:

V = a, e, h, i, o, u, w, y
C1 = b, f, p, v
C2 = c, g, j, k, q, s, x, z
C3 = d, t
C4 = l
C5 = m, n
C6 = r

3.6 Read Porter (1980) or see Martin Porter’s official homepage on the Porter stem-
mer. Implement one of the steps of the Porter Stemmer as a transducer.

Porter stemmer step 1a looks like:
SSES→ SS
IES → I
SS → SS
S →

One possible transducer for this step:
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3.7 Write the algorithm for parsing a finite-state transducer, using the pseudocode
introduced in Chapter 2. You should do this by modifying the algorithm ND-
RECOGNIZEin Fig. 2.19 in Chapter 2.

FSTs consider pairs of strings and outputacceptor reject. So the
major changes to theND-RECOGNIZE algorithm all revolve around
moving from looking at a single tape to looking at a pair of tapes.
Probably the most important change is in GENERATE-NEW-STATES,
where we now must try all combinations of advancing a character or
staying put (for anε) on either the source string or the target string.

function ND-RECOGNIZE(s-tape,t-tape,machine) returns accept/reject
agenda←{(Machine start state,s-tapestart,t-tapestart)}
while agendais not emptydo

current-state←NEXT(agenda)
if ACCEPT-STATE?(current-state) then

return accept
agenda← agenda∪ GENERATE-NEW-STATES(current-state)

return reject

function GENERATE-NEW-STATES(current-state) returns search states
node← the node thecurrent-stateis on
s-index← the point ons-tapethecurrent-stateis on
t-index← the point ont-tapethecurrent-stateis on
return

(transition[node, ε:ε], s-index, t-index) ∪
(transition[node, s-tape[s-index]:ε], s-index+ 1, t-index) ∪
(transition[node, ε:t-tape[t-index]], s-index, t-index+ 1)∪
(transition[node,s-tape[s-index]:t-tape[t-index]],s-index+1,t-index+1)

function ACCEPT-STATE?(search-state) returns true/false
node← the node thecurrent-stateis on
s-index← the point ons-tapethecurrent-stateis on
t-index← the point ont-tapethecurrent-stateis on
return s-indexis at the end of the tapeand

t-indexis at the end of the tapeand
nodeis an accept state of the machine

3.8 Write a program that takes a word and, using an on-line dictionary, computes
possible anagrams of the word, each of which is a legal word.

def permutations(string):
if len(string) < 2:

yield string
else:

first, rest = string[:1], string[1:]
indices = range(len(string))
for sub_string in permutations(rest):

for i in indices:
yield sub_string[:i] + first + sub_string[i:]

def anagrams(string):
for string in permutations(string):

if is_word(string): # query online dictionary
yield string
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3.9 In Fig. 3.17, why is there az, s, xarc fromq5 to q1?

Stateq1 represents the point at which we have seen at least onez,
s or x. If the z, s, xarc from q5 to q1 were not present, it would
be possible to transition on anz, sor x back to the initial state,q0.
This would allow invalid strings likesˆssˆs#by following the path
q0 → q1 → q2 → q5 → q0 → q1 → q0.

3.10 Computing minimum edit distances by hand, figure out whetherdrive is closer
to brief or to diversand what the edit distance is. You may use any version of
distancethat you like.

Using 1-insertion, 1-deletion, 2-substitution costs, there is a distance
of 4 betweendriveandbrief:

e 5 6 5 4 3 4
v 4 5 4 3 4 5
i 3 4 3 2 3 4
r 2 3 2 3 4 5
d 1 2 3 4 5 6
# 0 1 2 3 4 5

# b r i e f

Using 1-insertion, 1-deletion, 2-substitution costs, there is a distance
of 3 betweendriveanddivers:

e 5 4 3 2 1 2 3
v 4 3 2 1 2 3 4
i 3 2 1 2 3 4 5
r 2 1 2 3 4 3 4
d 1 0 1 2 3 4 5
# 0 1 2 3 4 5 6

# d i v e r s

Thus,drive is closer todiversthan tobrief.

3.11 Now implement a minimum edit distance algorithm and use yourhand-computed
results to check your code.

def min_edit_distance(target, source):
n = len(target)
m = len(source)
cols = range(1, n + 1)
rows = range(1, m + 1)

# initialize the distance matrix
distance = {(0, 0): 0}
for i in cols:

mod = ins_cost(target[i - 1])
distance[i, 0] = distance[i - 1, 0] + mod

for j in rows:
mod = del_cost(source[j - 1])
distance[0, j] = distance[0, j - 1] + mod

# sort like (0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) ...
# this guarantees the matrix is filled in the right order
indices = [(i, j) for i in cols for j in rows]
indices.sort(key=sum)
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# helper function for calculating distances
def get_dist(row, col, func, t_char, s_char):

chars = t_char, s_char
args = [char for char in chars if char != ’ * ’]
return distance[row, col] + func( * args)

# for each pair of indices, choose insertion, substitution
# or deletion, whichever gives the shortest distance
for i, j in indices:

t_char = target[i - 1]
s_char = source[j - 1]
distance[i, j] = min(

get_dist(i -1, j, ins_cost, t_char, ’ * ’),
get_dist(i - 1, j - 1, sub_cost, t_char, s_char),
get_dist(i, j - 1, del_cost, ’ * ’, s_char))

# return distance from the last row and column
return distance[n, m]

3.12 Augment the minimum edit distance algorithm to output an alignment; you will
need to store pointers and add a stage to compute the backtrace.

def min_edit(target, source):
n = len(target)
m = len(source)
cols = range(1, n + 1)
rows = range(1, m + 1)

# initialize the distance and pointer matrices
distance = {(0, 0): 0}
pointers = {(0, 0): (None, None, None, None)}
for i in cols:

t_char = target[i - 1]
distance[i, 0] = distance[i - 1, 0] + ins_cost(t_char)
pointers[i, 0] = (i - 1, 0, t_char, ’ * ’)

for j in rows:
s_char = source[j - 1]
distance[0, j] = distance[0, j - 1] + del_cost(s_char)
pointers[0, j] = (0, j - 1, ’ * ’, s_char)

# sort like (0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) ...
# this guarantees the matrix is filled in the right order
indices = [(i, j) for i in cols for j in rows]
indices.sort(key=sum)

# helper function for creating distance/pointer pairs
def get_pair(row, col, func, t_char, s_char):

chars = t_char, s_char
args = [char for char in chars if char != ’ * ’]
dist = distance[row, col] + func( * args)
pointer = row, col, t_char, s_char
return dist, pointer

# for each pair of indices, choose insertion, substitution
# or deletion, whichever gives the shortest distance
for i, j in indices:

t_char = target[i - 1]
s_char = source[j - 1]
pairs = [

get_pair(i -1, j, ins_cost, t_char, ’ * ’),
get_pair(i - 1, j - 1, sub_cost, t_char, s_char),
get_pair(i, j - 1, del_cost, ’ * ’, s_char),

]
dist, pointer = min(pairs, key=operator.itemgetter(0))
distance[i, j] = dist
pointers[i, j] = pointer

# follow pointers backwards through the path selected
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t_chars = []
s_chars = []
row, col = n, m
while True:

row, col, t_char, s_char = pointers[row, col]
if row is col is None:

break
t_chars.append(t_char)
s_chars.append(s_char)

# return distance, and two character strings
target_string = ’’.join(reversed(t_chars))
source_string = ’’.join(reversed(s_chars))
return distance[n, m], target_string, source_string



Chapter 4
N-Grams

4.1 Write out the equation for trigram probability estimation (modifying Eq. 4.14).

P (wn|wn−1, wn−2) = C(wn−2wn−1wn)
C(wn−2wn−1)

4.2 Write a program to compute unsmoothed unigrams and bigrams.

from __future__ import division
from collections import defaultdict as ddict
import itertools
import math
import random

class NGrams(object):
def __init__(self, max_n, words=None):

self._max_n = max_n
self._n_range = range(1, max_n + 1)
self._counts = ddict(lambda: 0)

# if words were supplied, update the counts
if words is not None:

self.update(words)

def update(self, words):
# increment the total word count, storing this under
# the empty tuple - storing it this way simplifies
# the _probability() method
self._counts[()] += len(words)

# count ngrams of all the given lengths
for i, word in enumerate(words):

for n in self._n_range:
if i + n <= len(words):

ngram_range = xrange(i, i + n)
ngram = [words[j] for j in ngram_range]
self._counts[tuple(ngram)] += 1

def probability(self, words):
if len(words) <= self._max_n:

return self._probability(words)
else:

prob = 1
for i in xrange(len(words) - self._max_n + 1):

ngram = words[i:i + self._max_n]
prob * = self._probability(ngram)

return prob

def _probability(self, ngram):
# get count of ngram and its prefix
ngram = tuple(ngram)
ngram_count = self._counts[ngram]
prefix_count = self._counts[ngram[:-1]]

# divide counts (or return 0.0 if not seen)
if ngram_count and prefix_count:

return ngram_count / prefix_count
else:

return 0.0

13
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4.3 Run yourN -gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two
corpora. What are the differences in the most common unigrams between the
two? How about interesting differences in bigrams?

A good approach to this problem would be to sort theN -grams for
each corpus by their probabilities, and then examine the first 100-
200 for each corpus. Both lists should contain the common function
words, e.g.,the, of, to, etc near the top. The content words are proba-
bly where the more interesting differences are – it should bepossible
to see some topic differences between the corpora from these.

4.4 Add an option to your program to generate random sentences.

class NGrams(object):
...
def generate(self, n_words):

# select unigrams
ngrams = iter(self._counts)
unigrams = [x for x in ngrams if len(x) == 1]

# keep trying to generate sentences until successful
while True:

try:
return self._generate(n_words, unigrams)

except RuntimeError:
pass

def _generate(self, n_words, unigrams):
# add the requested number of words to the list
words = []
for i in itertools.repeat(self._max_n):

# the prefix of the next ngram
if i == 1:

prefix = ()
else:

prefix = tuple(words[-i + 1:])

# select a probability cut point, and then try
# adding each unigram to the prefix until enough
# probability has been seen to pass the cut point
threshold = random.random()
total = 0.0
for unigram in unigrams:

total += self._probability(prefix + unigram)
if total >= threshold:

words.extend(unigram)
break

# return the sentence if enough words were found
if len(words) == n_words:

return words

# exit if it was impossible to find a plausible
# ngram given the current partial sentence
if total == 0.0:

raise RuntimeError(’impossible sequence’)
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4.5 Add an option to your program to do Good-Turing discounting.
class GoodTuringNGrams(NGrams):

def __init__(self, max_n, words=None):
self._default_probs = {}
self._smoothed_counts = ddict(lambda: 0)
super(GoodTuringNGrams, self).__init__(max_n, words)

def update(self, words):
super(GoodTuringNGrams, self).update(words)

# calculate number of ngrams with each count
vocab_counts = ddict(lambda: 0)
count_counts = ddict(lambda: ddict(lambda: 0))
for ngram in self._counts:

vocab_counts[len(ngram)] += 1
count_counts[len(ngram)][self._counts[ngram]] += 1

# determine counts for zeros
defaults = self._default_probs
defaults[0] = 0.0
for n in self._n_range:

# missing probability mass is the number of ngrams
# seen once divided by the number of ngrams seen
seen_count = vocab_counts[n]
missing_mass = count_counts[n][1] / seen_count

# for unigrams, there is no way to guess the number
# of unseen items, so the extra probability mass is
# arbitrarily distributed across as many new items
# as there were old items
if n == 1:

defaults[n] = missing_mass / seen_count

# for other ngrams, the extra probability mass
# is distributed across the remainder of the
# V ** N ngrams possible given V unigrams
else:

possible_ngrams = vocab_counts[1] ** n
unseen_count = possible_ngrams - seen_count
defaults[n] = missing_mass / unseen_count

# apply the count smoothing for all existing ngrams
self._smoothed_counts[()] = self._counts[()]
for ngram in self._counts:

if len(ngram) == 0:
continue

count = self._counts[ngram]
one_more = count_counts[len(ngram)][count + 1]
same = count_counts[len(ngram)][count]
smoothed_count = (count + 1) * one_more / same
self._smoothed_counts[ngram] = smoothed_count

def _probability(self, ngram):
# if ngram was never seen, return default probability
ngram = tuple(ngram)
ngram_count = self._counts[ngram]
if ngram_count == 0:

return self._default_probs[len(ngram)]

# divide smoothed counts (or return 0.0 if not seen)
else:

ngram_count = self._smoothed_counts[ngram]
prefix_count = self._smoothed_counts[ngram[:-1]]
if ngram_count and prefix_count:

return ngram_count / prefix_count
else:

return 0.0
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4.6 Add an option to your program to implement Katz backoff.

class KatzBackoffNGrams(GoodTuringNGrams):
def _discounted_probability(self, ngram):

return super(KatzBackoffNGrams, self)._probability(ng ram)

def _alpha(self, ngram):
get_prob = self._discounted_probability
longer_grams = [x for x in self._counts if x[:-1] == ngram]
longer_prob = sum(get_prob(x) for x in longer_grams)
suffix_prob = sum(get_prob(x[1:]) for x in longer_grams)
return (1 - longer_prob) / (1 - suffix_prob)

def _probability(self, ngram):
ngram = tuple(ngram)
if ngram in self._counts:

return self._discounted_probability(ngram)
else:

alpha = self._alpha(ngram[:-1])
prob = self._probability(ngram[1:])
return alpha * prob

4.7 Add an option to your program to compute the perplexity of a test set.

class NGrams(object):
...
def perplexity(self, words):

prob = self.probability(words)
return math.pow(prob, -1 / len(words))

4.8 (Adapted from Michael Collins). Prove Eq. 4.27 given Eq. 4.26 and any neces-
sary assumptions. That is, show that given a probability distribution defined by
the GT formula in Eq. 4.26 for theN items seen in training, the probability of the
next (i.e.,N + 1st) item being unseen in training can be estimated by Eq. 4.27.
You may make any necessary assumptions for the proof, including assuming that
all Nc are non-zero.

The missing mass is just the sum of the probabilities of all the ngrams
that were not yet seen:

missing mass =
∑

x:count(x)=0 P (x)

=
∑

x:count(x)=0
c∗(x)

N

Now using Eq. 4.26:

missing mass =
∑

x:count(x)=0

(0+1)
N0+1

N0

N

=
∑

x:count(x)=0
N1

N ·N0

= N1

N ·N0

∑

x:count(x)=0 1

But the sum of all ngrams with a count of zero is justN0, so:

missing mass = N1

N ·N0
·N0

= N1

N
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4.9 (Advanced) Suppose someone took all the words in a sentence and reordered
them randomly. Write a program that takes as input such abag of words andBag of words

produces as output a guess at the original order. You will need to use anN -gram
grammar produced by yourN -gram program (on some corpus), and you will
need to use the Viterbi algorithm introduced in the next chapter. This task is
sometimes calledbag generation.Bag generation

This problem is quite difficult. Generating the string with the maxi-
mum N-gram probability from a bag of words is NP-complete (see,
e.g., Knight (1999a)), so solutions to this problem shouldn’t try to
generate the maximum probability string. A good approach isprob-
ably to use one of the beam-search versions of Viterbi or best-first
search algorithms introduced for machine translation in Section 25.8,
collapsing the probabilities of candidates that use the same words in
the bag.

Another approach is to modify Viterbi to keep track of the setof
words used so far at each state in the trellis. This approach is closer
to Viterbi as discussed in the next chapter, but throws away many
less probable partial bags at each stage, so it doesn’t search the entire
space and can’t promise to produce the optimal word order.

import collections
ddict = collections.defaultdict

def guess_order(ngrams, word_bag):
# convert list of words into word counts
word_counts = ddict(lambda: 0)
for word in word_bag:

word_counts[word] += 1

# helper for creating new word counts minus one word
def removed(word_counts, word):

word_counts = word_counts.copy()
assert word_counts[word] > 0
word_counts[word] -= 1
return word_counts

# initialize the matrices for probabilities, backpointers
# and words remaining to be used
probs = ddict(lambda: ddict(lambda: 0))
pointers = ddict(lambda: {})
remaining = ddict(lambda: {})
for word in word_counts:

probs[0][word] = 1.0
pointers[0][word] = None
remaining[0][word] = removed(word_counts, word)

# for each word in the sentence-to-be, determine the best
# previous word by checking bigram probabilities
for i in xrange(1, len(word_bag)):

for word in word_counts:

# helper for calculating probability of going to
# this word from the previous, giving impossible
# values to words that have been used already
def get_prob(other_word):

if not remaining[i - 1][other_word][word]:
return -1

prob = ngrams.probability((other_word, word))
return probs[i - 1][other_word] * prob
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# select the best word and update the matrices
best_word = max(word_counts, key=get_prob)
probs[i][word] = get_prob(best_word)
pointers[i][word] = best_word
best_remaining = remaining[i - 1][best_word]
remaining[i][word] = removed(best_remaining, word)

# get the best final state
def get_final_prob(word):

return probs[i][word]
curr_word = max(word_counts, key=get_final_prob)

# follow the pointers to get the best state sequence
word_list = []
for i in xrange(i, -1, -1):

word_list.append(curr_word)
curr_word = pointers[i][curr_word]

word_list.reverse()
return word_list

4.10 The field ofauthorship attribution is concerned with discovering the author ofAuthorship
attribution

a particular text. Authorship attribution is important in many fields, including
history, literature, and forensic linguistics. For example, Mosteller and Wallace
(1964) applied authorship identification techniques to discover who wroteThe
Federalistpapers. The Federalist papers were written in 1787–1788 by Alexan-
der Hamilton, John Jay, and James Madison to persuade New York to ratify
the United States Constitution. They were published anonymously, and as a re-
sult, although some of the 85 essays were clearly attributable to one author or
another, the authorship of 12 were in dispute between Hamilton and Madison.
Foster (1989) applied authorship identification techniques to suggest that W.S.’s
Funeral Elegyfor William Peter might have been written by William Shake-
speare (he turned out to be wrong on this one) and that the anonymous author of
Primary Colors, the roman à clef about the Clinton campaign for the American
presidency, was journalist Joe Klein (Foster, 1996).

A standard technique for authorship attribution, first usedby Mosteller and
Wallace, is a Bayesian approach. For example, they trained aprobabilistic model
of the writing of Hamilton and another model on the writings of Madison, then
computed the maximum-likelihood author for each of the disputed essays. Many
complex factors go into these models, including vocabularyuse, word length,
syllable structure, rhyme, grammar; see Holmes (1994) for asummary. This
approach can also be used for identifying which genre a text comes from.

One factor in many models is the use of rare words. As a simple approx-
imation to this one factor, apply the Bayesian method to the attribution of any
particular text. You will need three things: a text to test and two potential au-
thors or genres, with a large computer-readable text sampleof each. One of
them should be the correct author. Train a unigram language model on each
of the candidate authors. You are going to use only thesingleton unigrams in
each language model. You will computeP (T |A1), the probability of the text
given author or genreA1, by (1) taking the language model fromA1, (2) multi-
plying together the probabilities of all the unigrams that occur only once in the
“unknown” text, and (3) taking the geometric mean of these (i.e., thenth root,
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wheren is the number of probabilities you multiplied). Do the same for A2.
Choose whichever is higher. Did it produce the correct candidate?

This approach can perform well by finding odd vocabulary choices
(singleton unigrams) that are unique to one author or the other. Ex-
ploring author pairs with varying degrees of similarity should give a
good idea of the power (and limitations) of this approach.



Chapter 5
Part-of-Speech Tagging

5.1 Find one tagging error in each of the following sentences that are tagged with
the Penn Treebank tagset:

1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
Atlanta/NNP

2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
dinner/NN

3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
have/VBP

4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NNflights/NNS
Can/MD

5.2 Use the Penn Treebank tagset to tag each word in the followingsentences from
Damon Runyon’s short stories. You may ignore punctuation. Some of these are
quite difficult; do your best.

1. It is a nice night.
It/PRP is/VBZ a/DT nice/JJ night/NN ./.

2. This crap game is over a garage in Fifty-second Street. . .
This/DT crap/NN game/NN is/VBZ over/IN a/DT garage/NN
in/IN Fifty-second/NNP Street/NNP. . .

3. . . . Nobody ever takes the newspapers she sells . . .
. . . Nobody/NN ever/RB takes/VBZ the/DT newspapers/NNS
she/PRP sells/VBZ. . .

4. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a mourn-
ful voice.

He/PRP is/VBZ a/DT tall/JJ ,/, skinny/JJ guy/NN with/IN a/DT
long/JJ ,/, sad/JJ ,/, mean-looking/JJ kisser/NN ,/, and/CC a/DT
mournful/JJ voice/NN ./.

5. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is a
dish I am very fond of, . . .

. . . I/PRP am/VBP sitting/VBG in/IN Mindy/NNP ’s/POS restau-
rant/NN putting/VBG on/RP the/DT gefillte/NN fish/NN ,/,
which/WDT is/VBZ a/DT dish/NN I/PRP am/VBP very/RB
fond/JJ of/RP ,/, . . .

6. When a guy and a doll get to taking peeks back and forth at each other, why
there you are indeed.

When/WRB a/DT guy/NN and/CC a/DT doll/NN get/VBP to/TO
taking/VBG peeks/NNS back/RB and/CC forth/RB at/IN
each/DT other/JJ ,/, why/WRB there/EX you/PRP are/VBP in-
deed/RB ./.

20
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5.3 Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

It should be nearly impossible for two people to come up with exactly
the same tags for all words in all the above sentences. Some ofthe
more difficult phrases are probablynobody, gefillte fish, each other
andthere you are.

5.4 Now tag the sentences in Exercise 5.2; use the more detailed Brown tagset in
Fig. 5.7.

1. It/PPS is/BEZ a/AT nice/JJ night/NN ./.
2. This/DT crap/NN game/NN is/BEZ over/IN a/AT garage/NN

in/IN Fifty-second/NP Street/NP
3. . . . Nobody/NN ever/RB takes/VBZ the/AT newspapers/NNS

she/PPS sells/VBZ
4. He/PPS is/BEZ a/AT tall/JJ ,/, skinny/JJ guy/NN with/IN a/AT

long/JJ ,/, sad/JJ ,/, mean-looking/JJ kisser/NN ,/, and/CC a/AT
mournful/JJ voice/NN ./.

5. . . . I/PPSS am/BEM sitting/VBG in/IN Mindy’s/NP$
restaurant/NN putting/VBG on/RP the/AT gefillte/NN fish/NN
,/, which/WDT is/BEZ a/AT dish/NN I/PPSS am/BEM very/RB
fond/JJ of/RP ,/, . . .

6. When/WRB a/AT guy/NN and/CC a/AT doll/NN get/VB to/TO
taking/VBG peeks/NNS back/RB and/CC forth/RB at/IN
each/DT other/JJ ,/, why/WRB there/EX you/PPSS are/BER in-
deed/RB ./.

5.5 Implement the TBL algorithm in Fig. 5.21. Create a small number of templates
and train the tagger on any POS-tagged training set you can find.

See Exercise 5.6 for the definition ofMostLikelyTagModel ,
which is used as a basis for the TBL implementation below. Note
that this implementation only includes rules looking for a single tag
in the surrounding tags, and not rules looking for multiple tags.

from __future__ import division

class Transform(object):
def __init__(self, old_tag, new_tag, key_tag, start, end) :

self._old_tag = old_tag
self._new_tag = new_tag
self._key_tag = key_tag
self._start = start
self._end = end

def apply(self, tags):

# for each tag that matches the old_tag
for i, tag in enumerate(tags):

if tag == self._old_tag:

# if the key tag is in the window, change to new_tag
start = max(0, i + self._start)
end = max(0, i + self._end)
if self._key_tag in tags[start:end]:

tags[i] = self._new_tag
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class TBLModel(MostLikelyTagModel):
def train(self, tagged_sentences):

super(TBLModel, self).train(train_data)
self._transforms = []

# collect the most likely tags
tags = []
correct_tags = []
for train_words, train_tags in tagged_sentences:

model_tags = super(TBLModel, self).predict(train_words )
tags.extend(model_tags)
correct_tags.extend(train_tags)

# generate all possible transforms that:
# change an old_tag at index i to a new_tag
# if key_tag is in tags[i + start: i + end]
transforms = []
windows = [(-3,0), (-2,0), (-1,0), (0,1), (0,2), (0,3)]
tag_set = set(correct_tags)
for old_tag in tag_set:

for new_tag in tag_set:
for key_tag in tag_set:

for start, end in windows:
transforms.append(Transform(

old_tag, new_tag, key_tag, start, end))

# helper for scoring predicted tags against the correct ones
def get_error(tags, correct_tags):

incorrect = 0
for tag, correct_tag in zip(tags, correct_tags):

incorrect += tag != correct_tag
return incorrect / len(tags)

# helper for getting the error of a transform
def transform_error(transform):

tags_copy = list(tags)
transform.apply(tags_copy)
return get_error(tags_copy, correct_tags)

# look for transforms that reduce the current error
old_error = get_error(tags, correct_tags)
while True:

# select the transform that has the lowest error, and
# stop searching if the overall error was not reduced
best_transform = min(transforms, key=transform_error)
best_error = transform_error(best_transform)
if best_error >= old_error:

break

# add the transform, and apply it to the tags
old_error = best_error
self._transforms.append(best_transform)
best_transform.apply(tags)

def predict(self, sentence):
# get most likely tags, and then apply transforms
tags = super(TBLModel, self).predict(sentence)
for transform in self._transforms:

transform.apply(tags)
return tags



23

5.6 Implement the “most likely tag” baseline. Find a POS-taggedtraining set, and
use it to compute for each word the tag that maximizesp(t|w). You will need to
implement a simple tokenizer to deal with sentence boundaries. Start by assum-
ing that all unknown words are NN and compute your error rate on known and
unknown words.

(Implementing a tokenizer was omitted below - sentences areas-
sumed to already be parsed into words and part-of-speech tags.)

from __future__ import division
from collections import defaultdict as ddict

class MostLikelyTagModel(object):
def __init__(self):

super(MostLikelyTagModel, self).__init__()
self._word_tags = {}

def train(self, tagged_sentences):
# count number of times a word is given each tag
word_tag_counts = ddict(lambda: ddict(lambda: 0))
for words, tags in tagged_sentences:

for word, tag in zip(words, tags):
word_tag_counts[word][tag] += 1

# select the tag used most often for the word
for word in word_tag_counts:

tag_counts = word_tag_counts[word]
tag = max(tag_counts, key=tag_counts.get)
self._word_tags[word] = tag

def predict(self, sentence):
# predict the most common tag, or NN if never seen
get_tag = self._word_tags.get
return [get_tag(word, ’NN’) for word in sentence]

def get_error(self, tagged_sentences):
# get word error rate
word_tuples = self._get_word_tuples(tagged_sentences)
return self._get_error(word_tuples)

def get_known_unknown_error(self, tagged_sentences):
# split predictions into known and unknown words
known = []
unknown = []
for tup in self._get_word_tuples(tagged_sentences):

word, _, _ = tup
dest = known if word in self._word_tags else unknown
dest.append(tup)

# calculate and return known and unknown error rates
return self._get_error(known), self._get_error(unknow n)

def _get_word_tuples(self, tagged_sentences):
# convert a list of sentences into word-tag tuples
word_tuples = []
for words, tags in tagged_sentences:

model_tags = self.predict(words)
word_tuples.extend(zip(words, tags, model_tags))

return word_tuples

def _get_error(self, word_tuples):
# calculate total and incorrect labels
incorrect = 0
for word, expected_tag, actual_tag in word_tuples:

if expected_tag != actual_tag:
incorrect += 1

return incorrect / len(word_tuples)
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Now write at least five rules to do a better job of tagging unknown words, and
show the difference in error rates.

class RulesModel(MostLikelyTagModel):
def predict(self, sentence):

tags = super(RulesModel, self).predict(sentence)
for i, word in enumerate(sentence):

if word not in self._word_tags:

# capitalized words are proper nouns
# about 20% improvement on unknown words
if word.istitle():

tags[i] = ’NNP’

# words ending in -s are plural nouns
# about 10% improvement on unknown words
elif word.endswith(’s’):

tags[i] = ’NNS’

# words with an initial digit are numbers
# about 7% improvement on unkown words
elif word[0].isdigit():

tags[i] = ’CD’

# words with hyphens are adjectives
# about 3% improvement on unknown words
elif ’-’ in word:

tags[i] = ’JJ’

# words ending with -ing are gerunds
# about 2% improvement on unknown words
elif word.endswith(’ing’):

tags[i] = ’VBG’

return tags

5.7 Recall that the Church (1988) tagger is not an HMM tagger since it incorporates
the probability of the tag given the word:

P (tag|word) ∗ P (tag|previousn tags) (5.1)

rather than using the likelihood of the word given the tag, asan HMM tagger
does:

P (word|tag) ∗ P (tag|previousn tags) (5.2)

Interestingly, this use of a kind of “reverse likelihood” has proven to be useful
in the modern log-linear approach to machine translation (see page 903). As a
gedanken-experiment, construct a sentence, a set of tag transition probabilities,
and a set of lexical tag probabilities that demonstrate a wayin which the HMM
tagger can produce a better answer than the Church tagger, and create another
example in which the Church tagger is better.

The Church (1988) and HMM taggers will perform differently when,
given two tags, tag1 and tag2,:

P (tag1|word) > P (tag2|word)

but,

P (word|tag1) < P (word|tag2)
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This happens, for example, with words likemanufacturingwhich was
associated with the following probabilities in a sample of text from
the Wall Street Journal:

P (VBG|manufacturing) = 0.231
P (NN|manufacturing) = 0.769
P (manufacturing|VBG) = 0.004
P (manufacturing|NN) = 0.001

Thus, if we are looking at the words and we seemanufacturing, we
expect this word to receive the tag NN, not the tag VBG. But if we
are looking at the tags, we expectmanufacturingto be produced more
often from a VBG state than from an NN state.

Given a word like this, we can construct situations where either
the Church (1988) tagger or the HMM tagger produces the wrong
result by building a simple transition table where all transitions are
equally likely, e.g.:

P (NN|<s> ) = P (VBG|<s> ) = 0.5

Then the HMM model will select the VBG label:

P (manufacturing|NN) ∗ P (NN|<s> ) = 0.001 ∗ 0.5 = 0.0005
P (manufacturing|VBG) ∗ P (VBG|<s> ) = 0.004 ∗ 0.5 = 0.002

while the Church (1988) tagger will select the NN label:

P (NN|manufacturing) ∗ P (NN|<s> ) = 0.769 ∗ 0.5 = 0.3845
P (VBG|manufacturing) ∗ P (VBG|<s> ) = 0.231 ∗ 0.5 = 0.1155

If we have a phrase likeManufacturing plants are useful, then the
Church (1988) tagger has the better answer, while if we have aphrase
like Manufacturing plants that are brightly colored is popular, then
the HMM tagger has the better answer.

5.8 Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training set,
train the transition and observation probabilities of the HMM tagger directly on
the hand-tagged data. Then implement the Viterbi algorithmfrom this chapter
and Chapter 6 so that you can decode (label) an arbitrary testsentence. Now run
your algorithm on the test set. Report its error rate and compare its performance
to the most frequent tag baseline.

Note that it’s extremely important that the probabilities obtained from
the corpus are smoothed, particularly the probability of emitting a
word from a particular tag. If they aren’t smoothed, then anyword
never seen in the training data will have an emission probability of
zero for all states, and an entire column of the Viterbi search will
have probability zero.

With even a simple smoothing model though, the HMM tagger
should outperform the most frequent tag baseline. See the Chapter 6
exercises for HMM code.
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5.9 Do an error analysis of your tagger. Build a confusion matrixand investigate the
most frequent errors. Propose some features for improving the performance of
your tagger on these errors.

Some common confusions are nouns vs. adjectives, common nouns
vs. proper nouns, past tense verbs vs. past participle verbs, etc. A va-
riety of features could be proposed to address such problems, though
one obvious one is including capitalization information tohelp iden-
tify proper nouns.

5.10 Compute a bigram grammar on a large corpus and re-estimate the spelling cor-
rection probabilities shown in Fig. 5.25 given the correct sequence. . . was called
a “stellar and versatileacresswhose combination of sass and glamour has de-
fined her. . . ”’. Does a bigram grammar prefer the correct wordactress?

Scoring corrections using the bigram probability:
P (corrected-word|previous-word)

instead of the unigram probability
P (corrected-word)

should makeactressmore probable, sinceversatile actressis much
more likely to occur in a corpus thanversatile acres.

5.11 Read Norvig (2007) and implement one of the extensions he suggests to his
Python noisy channel spellchecker.

Some of the suggested extensions are:

• Improve the language model by using anN -gram model instead
of a unigram one.
• Improve the error model so that it knows something about char-

acter substitutions. For example, changingadresto addressor
thayto theyshould be penalized less than changingadresto acres
or thayto that. This will likely require allowing two character ed-
its to sometimes be less expensive than one character edits.Also,
setting such weights manually is likely to be difficult, so this will
probably require training on a corpus of spelling mistakes.
• Allow unseen verbs to be created from seen verbs by adding-ed,

unseen nouns to be created from seen nouns by adding-s, etc.
• Allow words with edit distance greater than two, but withoutal-

lowing all possible sequences with edit distance three. Forex-
ample, allow vowel replacements or similar consonant replace-
ments, but no other types of edits.



Chapter 6
Hidden Markov and

Maximum Entropy Models
6.1 Implement the Forward algorithm and run it with the HMM in Fig. 6.3 to com-

pute the probability of the observation sequences331122313and331123312.
Which is more likely?

An HMM that calculates probabilities with the forward algorithm:
from collections import defaultdict as ddict

class HMM(object):
INITIAL = ’ * Initial * ’
FINAL = ’ * Final * ’

def __init__(self):
self._states = []
self._transitions = ddict(lambda: ddict(lambda: 0.0))
self._emissions = ddict(lambda: ddict(lambda: 0.0))

def add(self, state, transition_dict={}, emission_dict= {}):
self._states.append(state)

# build state transition matrix
for target_state, prob in transition_dict.items():

self._transitions[state][target_state] = prob

# build observation emission matrix
for observation, prob in emission_dict.items():

self._emissions[state][observation] = prob

def probability(self, observations):
# get probability from the last entry in the trellis
probs = self._forward(observations)
return probs[len(observations)][self.FINAL]

def _forward(self, observations):
# initialize the trellis
probs = ddict(lambda: ddict(lambda: 0.0))
probs[-1][self.INITIAL] = 1.0

# update the trellis for each observation
i = -1
for i, observation in enumerate(observations):

for state in self._states:

# sum the probabilities of transitioning to
# the current state and emitting the current
# observation from any of the previous states
probs[i][state] = sum(

probs[i - 1][prev_state] *
self._transitions[prev_state][state] *
self._emissions[state][observation]
for prev_state in self._states)

# sum the probabilities for all states in the last
# column (the last observation) of the trellis
probs[len(observations)][self.FINAL] = sum(

probs[i][state] for state in self._states)
return probs
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Building the HMM in Fig. 6.3, we see that the sequence331123312
is more likely than the sequence331122313:
>>> hmm = HMM()
>>> hmm.add(HMM.INITIAL, dict(H=0.8, C=0.2))
>>> hmm.add(’H’, dict(H=0.7, C=0.3), {1:.2, 2:.4, 3:.4})
>>> hmm.add(’C’, dict(H=0.4, C=0.6), {1:.5, 2:.4, 3:.1})
>>> hmm.probability([3, 3, 1, 1, 2, 3, 3, 1, 2])
3.9516275425280015e-005
>>> hmm.probability([3, 3, 1, 1, 2, 2, 3, 1, 3])
3.575714750873601e-005

6.2 Implement the Viterbi algorithm and run it with the HMM in Fig. 6.3 to compute
the most likely weather sequences for each of the two observation sequences
above,331122313and331123312.

Here, we add a method for using the Viterbi algorithm to predict the
most likely sequence of states given a sequence of observations. The
code closely mirrors that of the forward algorithm, but looks for the
maximum probability instead of the sum, and keeps a table of back-
pointers to recover the best state sequence.
class HMM(object):

...
def predict(self, observations):

# initialize the probabilities and backpointers
probs = ddict(lambda: ddict(lambda: 0.0))
probs[-1][self.INITIAL] = 1.0
pointers = ddict(lambda: {})

# update the probabilities for each observation
i = -1
for i, observation in enumerate(observations):

for state in self._states:

# calculate probabilities of taking a transition
# from a previous state to this one and emitting
# the current observation
path_probs = {}
for prev_state in self._states:

path_probs[prev_state] = (
probs[i - 1][prev_state] *
self._transitions[prev_state][state] *
self._emissions[state][observation])

# select previous state with the highest probability
best_state = max(path_probs, key=path_probs.get)
probs[i][state] = path_probs[best_state]
pointers[i][state] = best_state

# get the best final state
curr_state = max(probs[i], key=probs[i].get)

# follow the pointers to get the best state sequence
states = []
for i in xrange(i, -1, -1):

states.append(curr_state)
curr_state = pointers[i][curr_state]

states.reverse()
return states

Using the HMM from Fig. 6.3 as in 1, we can see that331122313and
331123312both correspond to the sequence HHCCHHHHH:
>>> ’’.join(hmm.predict([3, 3, 1, 1, 2, 2, 3, 1, 3]))
’HHCCHHHHH’
>>> ’’.join(hmm.predict([3, 3, 1, 1, 2, 3, 3, 1, 2]))
’HHCCHHHHH’
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6.3 Extend the HMM tagger you built in Exercise 5.8 by adding the ability to make
use of some unlabeled data in addition to your labeled training corpus. First ac-
quire a large unlabeled (i.e., no part-of-speech tags) corpus. Next, implement
the forward-backward training algorithm. Now start with the HMM parameters
you trained on the training corpus in Exercise 5.8; call thismodelM0. Run the
forward-backward algorithm with these HMM parameters to label the unsuper-
vised corpus. Now you have a new modelM1. Test the performance ofM1 on
some held-out labeled data.

Here, we add a method for training the HMM using the forward-
backward algorithm. We simplify the problem a bit by using a fixed
number of iterations instead of trying to determine convergence.

class HMM(object):
...
def train(self, observations, iterations=100):

# only update non-initial, non-final states
states_to_update = list(self._states)
for state in [self.INITIAL, self.FINAL]:

if state in states_to_update:
states_to_update.remove(state)

# iteratively update states
for _ in range(iterations):

# run the forward and backward algorithms and get the
# probability of the observations sequence
forward_probs = self._forward(observations)
backward_probs = self._backward(observations)
obs_prob = forward_probs[len(observations)][self.FINA L]

# calculate probabilities of being at a given state and
# emitting observation i
emission_probs = ddict(lambda: {})
for i, observation in enumerate(observations):

for state in states_to_update:
emission_probs[i][state] = (

forward_probs[i][state] *
backward_probs[i][state] /
obs_prob)

# calculate probabilities of taking the transition
# between a pair of states for observations i and i + 1
transition_probs = ddict(lambda: ddict(lambda: {}))
transition_indices = range(len(observations) - 1)
for i in transition_indices:

next_obs = observations[i + 1]
for state1 in states_to_update:

for state2 in states_to_update:
transition_probs[i][state1][state2] = (

forward_probs[i][state1] *
self._transitions[state1][state2] *
self._emissions[state2][next_obs] *
backward_probs[i + 1][state2] /
obs_prob)

# update transition probabilities by summing the
# probabilities of each state-state transition
for state1 in states_to_update:

total = 0
for state2 in states_to_update:

count = self._transitions[state1][state2] = sum(
transition_probs[i][state1][state2]
for i in transition_indices)

total += count
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# normalize counts into probabilities
if total:

for state2 in states_to_update:
self._transitions[state1][state2] /= total

# find which observations occurred at which indices
observation_indices = ddict(lambda: [])
for i, observation in enumerate(observations):

observation_indices[observation].append(i)

# update emission probabilities by summing the
# probabilities for each state-observation pair
for state in states_to_update:

total = 0
for obs, indices in observation_indices.items():

count = self._emissions[state][obs] = sum(
emission_probs[i][state] for i in indices)

total += count

# normalize counts into probabilities
if total:

for obs in observation_indices:
self._emissions[state][obs] /= total

def _backward(self, observations):
# initialize the trellis
probs = ddict(lambda: ddict(lambda: 0.0))

# all states have equal probability of the final state
for state in self._states:

probs[len(observations) - 1][state] = 1.0

# update the trellis for each observation
for i in xrange(len(observations) - 2, -1, -1):

for state in self._states:

# sum the probabilities of transitioning to
# the current state and emitting the current
# observation from any of the previous states
probs[i][state] = sum(

probs[i + 1][next_state] *
self._transitions[state][next_state] *
self._emissions[next_state][observations[i + 1]]
for next_state in self._states)

# sum the probabilities of transitioning from the start
# state to any of the paths in the trellis
probs[0][self.INITIAL] = sum(

probs[0][state] *
self._transitions[self.INITIAL][state] *
self._emissions[state][observations[0]]
for state in self._states)

return probs

Given reasonable data and a good set of initial transition and emis-
sion probabilities, running the forward-backward training algorithm
should generally improve the performance of the original model.
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6.4 As a generalization of the previous homework, implement Jason Eisner’s HMM
tagging homework available from his webpage. His homework includes a cor-
pus of weather and ice-cream observations, a corpus of English part-of-speech
tags, and a very hand spreadsheet with exact numbers for the forward-backward
algorithm that you can compare against.

Jason Eisner’s handout for this homework is quite detailed,and care-
fully walks through the implementation of Viterbi, a smoothed bigram
model, and the forward-backward algorithm. The handout also gives
expected results at a number of points during the process so that you
can check that your code is producing the correct numbers.

6.5 Train a MaxEnt classifier to decide if a movie review is a positive review (the
critic liked the movie) or a negative review. Your task is to take the text of a
movie review as input, and produce as output either 1 (positive) or 0 (negative).
You don’t need to implement the classifier itself, you can findvarious MaxEnt
classifiers on the Web. You’ll need training and test sets of documents from
a labeled corpus (which you can get by scraping any web-basedmovie review
site), and a set of useful features. For features, the simplest thing is just to create
a binary feature for the 2500 most frequent words in your training set, indicating
if the word was present in the document or not.

Determining the polarity of a movie review is a kind ofsentiment analysisSentiment analysis

task. For pointers to the rapidly growing body of work on extraction of sen-
timent, opinions, and subjectivity see the collected papers in Qu et al. (2005),
and individual papers like Wiebe (2000), Pang et al. (2002),Turney (2002), Tur-
ney and Littman (2003), Wiebe and Mihalcea (2006), Thomas etal. (2006) and
Wilson et al. (2006).

There are basically three steps to this exercise:

1. Collect movie reviews from the web. This will require either
using one of the standard corpora, e.g.,

www.cs.cornell.edu/People/pabo/movie-review-data/

or finding an appropriate site, doing a simple web crawl of their
pages, and parsing enough of the HTML to extract the ratings
and some text for each page.

2. Extract all words from the collection, count them, and select the
top 2500. For each movie review, generate a classification in-
stance with a label of 0 (negative review) or 1 (positive review)
and with one binary feature for each of the 2500 words.

3. Train a MaxEnt classifier on the training portion of the classifi-
cation instances, and test it on the testing portion.

Additional exploration of the problem might involve doing some error
analysis of the classifier, and including some features thatgo beyond
a simple bag-of-words.
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Phonetics

7.1 Find the mistakes in the ARPAbet transcriptions of the following words:

Word Original Corrected
a. “three” [dh r i] [th r iy]
b. “sing” [s ih n g] [s ih ng]
c. “eyes” [ay s] [ay z]
d. “study” [s t uh d i] [s t ah d iy]
e. “though” [th ow] [dh ow]
f. “planning” [pl aa n ih ng] [p l ae n ih ng]
g. “slight” [s l iy t] [s l ay t]

7.2 Translate the pronunciations of the following color words from the IPA into the
ARPAbet (and make a note if you think you pronounce them differently than
this!):

IPA ARPAbet
a. [rEd] [r eh d]
b. [blu] [b l uw]
c. [grin] [g r iy n]
d. ["jEloU] [y eh l ow]
e. [blæk] [b l ae k]
f. [waIt] [w ay t]
g. ["OrIndZ] [ao r ix n jh]
h. ["pÇpl

"
] [p er p el]

i. [pjus] [p y uw s]
j. [toUp] [t ow p]

7.3 Ira Gershwin’s lyric forLet’s Call the Whole Thing Offtalks about two pronun-
ciations (each) of the words “tomato”, “potato”, and “either”. Transcribe into the
ARPAbet both pronunciations of each of these three words.

“tomato” [t ax m ey dx ow] [t ax m aa dx ow]
(or alternatively) [t ax m ey t ow] [t ax m aa t ow]

“potato” [p ax t ey dx ow] [p ax t aa dx ow]
(or alternatively) [p ax t ey t ow] [p ax t aa t ow]

“either” [iy dh axr] [ay dh axr]

7.4 Transcribe the following words in the ARPAbet:

1. dark [d aa r k]
2. suit [s uw t]
3. greasy [g r iy s iy]
4. wash [w aa sh]
5. water [w aa dx axr]
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7.5 Take a wavefile of your choice. Some examples are on the textbook website.
Download the Praat software, and use it to transcribe the wavefiles at the word
level and into ARPAbet phones, using Praat to help you play pieces of each
wavefile and to look at the wavefile and the spectrogram.

From the textbook website:

2001B 0049a.wav
yeah but there’s really no written rule
iy ae b uh d eh r sh r ih l iy n ow r ih t n r uw l

2005A 0046.wav
I truly wish that if something like
ay t r uw l iy w ih sh dh ih t ih f s ah m th ih ng l ay k

that were to happen then my children
dh ae w er dx ax h ae p n dh ax m ay ch ih l d r n

would do something like
w ax d uw s ah m th ih ng l ay

radionews.wav
police also say Levy’s blood alcohol
p ax l ih s aa l s ax s ey l iy v iy z b l ah d ae l k ax h aa

level was twice the legal limit
l eh v l w ax z t w ay s dh ax l iy g l l ih m ih t

7.6 Record yourself saying five of the English vowels: [aa], [eh], [ae], [iy], [uw].
Find F1 and F2 for each of your vowels.

These vowels typicaly have formants something like:
Vowel F1 F2
[aa] 700 1150
[eh] 550 1750
[ae] 700 1650
[iy] 300 2300
[uw] 300 850

Individual variation is quite large, and seeing even a difference of 100
Hz or more is not unreasonable. However, the ordering of formants
should be relatively stable, e.g., F1 for [aa] and [ae] should be higher
than that of [eh] which should be higher than that of [iy] and [uw].
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Speech Synthesis

8.1 Implement the text normalization routine that deals with MONEY, that is, map-
ping strings of dollar amounts like$45, $320, and$4100to words (either writing
code directly or designing an FST). If there are multiple ways to pronounce a
number you may pick your favorite way.

def expand_money(money_string):
# strip off the dollar sign and commas
number = int(re.sub(r’[,$]’, ’’, money_string))

# generate a number followed by ’dollars’
words = expand_number(number)
words.append(’dollars’)
return words

def expand_number(number):
words = []

# break off chunks for trillions, millions, ... hundreds
for divisor, word in _chunk_pairs:

chunk, number = divmod(number, divisor)
if chunk:

words.extend(expand_number(chunk))
words.append(word)

# use a table for single digits and irregulars
if number and number in _numbers:

words.append(_numbers[number])

# otherwise, split into tens and ones
elif number:

tens, ones = divmod(number, 10)
words.append(_numbers[tens * 10])
words.append(_numbers[ones])

# return the words, or ’zero’ if no words were found
return words or [_numbers[0]]

_chunk_pairs = [
(1000000000000, ’trillion’), (1000000000, ’billion’),
(1000000, ’million’), (1000, ’thousand’), (100, ’hundred ’)]

_numbers = {
0: ’zero’, 1: ’one’, 2: ’two’, 3: ’three’, 4: ’four’,
5: ’five’, 6: ’six’, 7: ’seven’, 8: ’eight’, 9: ’nine’,
10: ’ten’, 11: ’eleven’, 12: ’twelve’, 13: ’thirteen’,
14: ’fourteen’, 15: ’fifteen’, 16: ’sixteen’,
17: ’seventeen’, 18: ’eighteen’, 19: ’nineteen’,
20: ’twenty’, 30: ’thirty’, 40: ’forty’, 50: ’fifty’,
60: ’sixty’, 70: ’seventy’, 80: ’eighty’, 90: ’ninety’}
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8.2 Implement the text normalization routine that deals with NTEL, that is, seven-
digit phone numbers like555-1212, 555-1300, and so on. Use a combination of
the paired and trailing unit methods of pronunciation for the last four digits.
(Again, either write code or design an FST).

def expand_telephone(number_string):
# clean the string, then convert all but the last four digits
number_string = re.sub(r’[-()\s]’, ’’, number_string)
words = [_phone_digits[int(d)] for d in number_string[:-4 ]]
last4 = number_string[-4:]

# convert zeros individually and all else pairwise
if last4 == ’0000’:

words.extend([_phone_digits[0]] * 4)
else:

words.extend(expand_pairwise(last4))
return words

def expand_pairwise(four_digits):
# convert thousands as a single number
words = []
if four_digits[-3:-1] == ’00’:

words.extend(expand_number(int(four_digits)))

# otherwise, convert the digits in pairs
# (using ’hundred’ for a final 00)
else:

pair1 = int(four_digits[:-2])
pair2 = int(four_digits[-2:])
words.extend(expand_number(pair1))
word = expand_number(pair2) if pair2 else [’hundred’]
words.extend(word)

return words

_phone_digits = {
0: ’oh’, 1: ’one’, 2: ’two’, 3: ’three’, 4: ’four’,
5: ’five’, 6: ’six’, 7: ’seven’, 8: ’eight’, 9: ’nine’}

8.3 Implement the text normalization routine that deals with type NDATE in Fig. 8.4.
def expand_date(date_string):

# split date into days, months and years
date_parts = re.split(r’[/-]’, date_string)
date_parts = [int(part) for part in date_parts]
date_parts.extend([None] * (3 - len(date_parts)))
day, month, year = date_parts

# swap day and month if necessary (NOTE: this may miss
# some swaps when both month and day are less than 12)
if month > 12 >= day:

day, month = month, day

# add digits to year if necessary
if year is not None and year < 100:

this_year = datetime.datetime.today().year
year += this_year / 100 * 100

# years too far in the future are probably
# in the past, e.g., 89 probably means 1989
if year > this_year + 10:

year -= 100

# expand months, day and year
words = [_months[month - 1]]
words.extend(to_ordinal(expand_number(day)))
if year is not None:

words.extend(expand_pairwise(str(year)))
return words
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def to_ordinal(number_words):
# convert the last word to an ordinal
last_word = number_words[-1]

# use a table for irregulars
if last_word in _ordinals:

ordinal = _ordinals[last_word]

# otherwise, add ’th’ (changing ’y’ to ’i’ if necessary)
elif last_word.endswith(’y’):

ordinal = last_word[:-1] + ’ieth’
else:

ordinal = last_word + ’th’

# add the ordinal back to the rest of the words
return number_words[:-1] + [ordinal]

_ordinals = dict(
one=’first’, two=’second’, three=’third’,
five=’fifth’, eight=’eighth’, nine=’ninth’, twelve=’tw elfth’)

_months = [
’january’, ’february’, ’march’, ’april’,
’may’, ’june’, ’july’, ’august’,
’september’, ’october’, ’november’, ’december’]

8.4 Implement the text normalization routine that deals with type NTIME in Fig. 8.4.
def expand_time(time_string):

# split time into hours and minutes
time_parts = re.split(r’[.:]’, time_string)
hours, minutes = [int(part) for part in time_parts]

# if minutes == 00, add "o’clock"
words = expand_number(hours)
if not minutes:

words.append("o’clock")

# otherwise, expand the minutes as well, adding the
# ’oh’ for ’01’ through ’09’
else:

if minutes < 10:
words.append(’oh’)

words.extend(expand_number(minutes))
return words

8.5 (Suggested by Alan Black.) Download the free Festival speech synthesizer. Aug-
ment the lexicon to correctly pronounce the names of everyone in your class.

Lexicon entries for Festival look something like:

("photography" n (
((f @) 0)
((t o g) 1)
((r @ f) 0)
((ii) 0)))

This says that when the wordphotographyis encountered and it is a
noun, it is pronounced as[f@ ’tAg r@f i].

The most important sections of the Festival documentation are
probably the “Lexicons” chapter, which explains the lexicon entry
format, and the “US phoneset” and “UK phoneset” sections at the
end of the documentation, which explain the transcription symbols.
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8.6 Download the Festival synthesizer. Using your own voice, record and train a
diphone synthesizer.

If the recording is done in a language for which Festival already has
a phoneset and lexicon, e.g., English, then this exercise requires only
three major steps:

• Speaking and recording a long list of diphones
• Automatically aligning and labeling the diphone segments
• Testing the model and hand-correcting the diphone labelings

The Festival documentation walks through each of these steps in de-
tail, and shows the Festival commands that must be run at eachstage.

8.7 Build a phrase boundary predictor. You can use any classifieryou like, and you
should implement some of the features described on page 263.

Good baselines to compare the models against:

• Boundaries after all punctuation
• Boundaries before function words preceded by content words

To get the best picture of model performance, models should be eval-
uated using precision and recall rather than simple accuracy.
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Automatic Speech Recognition

9.1 Analyze each of the errors in the incorrectly recognized transcription of “um the
phone is I left the. . . ” on page 328. For each one, give your best guess as to
whether you think it is caused by a problem in signal processing, pronunciation
modeling, lexicon size, language model, or pruning in the decoding search.

There are many possible explanations for each of the errors of the
system. This exercise is just intended to get students thinking about
the different components of an ASR system, and how they interact.
The following are a few possible explanations for the systemerrors.

i UM → i GOT IT TO
Assigning a cause to this error was unintentionally tricky because
the alignment program dropped all word fragments in its output. So
the input probably looked more likeG- T- UM, or something similar.
Given such input, both the lexicon and language model would proba-
bly try to turn these partial words into full words, producing GOT IT
TO instead ofUM.

PHONE IS→ FULLEST
LEFT THE → LOVE TO
PHONE→ FORM
UPSTAIRS→ OF STORES
For all of these errors, the two phrases are similar phonetically, e.g.,
[l eh f th ax] and [l ah f t ax]. On the one hand, this could suggest
that the acoustic model correctly identified them as being similar, and
the problem was in the language model, e.g., having seen “i love to”
more than “i left the” during training. On the other hand, this could
suggest that the problem is that the acoustic model didn’t sufficiently
distinguish between the two phrases phonetically.

Particularly in the case of the language model, the compounding
of other errors could also be at fault. For example, given that the
model has already made the error,GOT IT TO, the phraseTO the
FULLESTis probably much more likely in the language model than
TO the PHONE IS.
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9.2 In practice, as we mentioned earlier in Chapter 4, speech recognizers do all their
probability computation by using thelog probability (logprob) rather than ac-
tual probabilities. This helps avoid underflow for very small probabilities, but
also makes the Viterbi algorithm very efficient since all probability multiplica-
tions can be implemented by adding logprobs. Rewrite the pseudocode for the
Viterbi algorithm in Fig. 9.26 on page 321 to make use of logprobs instead of
probabilities.

function V ITERBI(observationsof lenT, state-graphof lenN) returns best-path
;; initialize the probability and backpointer matrices
create a path log-probability matrixviterbi[N+2,T]
for each states from 1 to N do

viterbi[s,1]← log(a0,s) + log(bs(o1))
backpointer[s,1]← 0

;; fill in the matrices from left to right
for each time stept from 2 to T do

for each states from 1 to N do
viterbi[s,t]←

N
max
s
′=1

viterbi[s′, t− 1] + log(as′,s) + log(bs(ot))

backpointer[s,t]←
N

argmax
s
′=1

viterbi[s′, t− 1] + log(as′,s)

;; select the best final state

viterbi[qF ,T ]←
N

max
s=1

viterbi[s, T ] + log(as,qF
)

backpointer[qF ,T ]←
N

argmax
s=1

viterbi[s, T ] + log(as,qF
)

return . . .

9.3 Now modify the Viterbi algorithm in Fig. 9.26 to implement the beam search
described on page 323. Hint: You will probably need to add in code to check
whether a given state is at the end of a word or not.

function V ITERBI(observationsof lenT, state-graphof lenN, θ) returns best-path
. . .
;; fill in the matrices from left to right
for each time stept from 2 to T do

for each states from 1 to N do
viterbi[s,t]←

N
max
s
′=1

viterbi[s′, t− 1] + log(as′,s) + log(bs(ot))

backpointer[s,t]←
N

argmax
s
′=1

viterbi[s′, t− 1] + log(as′,s)

;; prune any word-final states that are outside of the beam

best-prob←
N

max
s=1

viterbi[s, t]

for each states wheres is at the end of a worddo
if viterbi[s, t] + θ < best-probthen

Prune viterbi[s, t]

;; select the best final state . . .
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9.4 Finally, modify the Viterbi algorithm in Fig. 9.26 with moredetailed pseudocode
implementing the array of backtrace pointers.

function V ITERBI(observationsof lenT, state-graphof lenN, θ) returns best-path
. . .
create an arraybest-path[T]
s← backpointer[qF ,T ]
for each time stept from T to 1 do

best-path[t]← s

s← backpointer[s,t]
return best-path

9.5 Using the tutorials available as part of a publicly available recognizer like HTK
or Sonic, build a digit recognizer.

This exercise consists of the following steps:

1. Record each digit several times
2. Label the recordings with silence and digit segments
3. Convert the waveforms to acoustical vectors
4. Train the recognizer on the vectors and their labels
5. Record some new digits and test the model

Manually creating the dataset is likely to be the most time consuming
part of this exercise. Most publicly available recognizersinclude tools
for doing the other steps automatically.

9.6 Take the digit recognizer above and dump the phone likelihoods for a sentence.
Show that your implementation of the Viterbi algorithm can successfully decode
these likelihoods.

The goal of this exercise is to convert the pseudocode developed in
Exercises 9.2, 9.3 and 9.4, and apply it to an actual problem.Using
logprobs, in particular, will be crucial for this task sincethe many
small probabilities would quickly run into numeric underflow issues.



Chapter 10
Speech Recognition:

Advanced Topics
10.1 Implement the Stack decoding algorithm of Fig. 10.7 on page 342. Pick a simple

h∗ function like an estimate of the number of words remaining inthe sentence.

To simplify this assignment a bit, skip the fast matching part. Those
interested in trying the fast-match technique should see Gopalakrish-
nan and Bahl (1996).

10.2 Modify the forward algorithm of Fig. 9.23 on page 319 to use the tree-structured
lexicon of Fig. 10.10 on page 345.

Sor more information on the implementation of tree-structured lexi-
cons, see Chapter 13 of Huang et al. (2001).
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Chapter 11
Computational Phonology

11.1 Build an automaton for rule (11.3).

The symbol “[-voice]” means a voiced sound (potentially producing
anything) and the symbol “other” means any sound not used on other
arcs leaving the same state (also potentially producing anything).

11.2 Some Canadian dialects of English exhibitCanadian raising: /aI/ is raised toCanadian raising

[2I] and/aU/ to [2U] in stressed position before a voiceless consonant (Brom-
berger and Halle, 1989). A simplified rule dealing only with/aI/ can be stated
as:

/aI/→ [2I] /

[

C

−voice

]

(11.1)

In some Canadian dialects this rule interacts with the flapping rule, causing dif-
ferent pronunciations for the wordsrider ([raIRÄ]) andwriter ([r2IRÄ]). Write a
two-level rule and an automaton for the raising and flapping rules that correctly
models this distinction, making simplifying assumptions as needed.

When applying the Canadian raising rule, we must look for voiceless
consonants at the lexical level, not the surface level. Otherwise, the
rule would not apply towriter which has the lexical form/raItÄ/ but
the surface form[raIRÄ]. Thus, our two-level rules should look like:

áI : 2́I⇔

[

C

−voice

]

:

t : dx⇔ V́ V

The automaton for the raising rule then looks like:
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And the automaton for the flapping rule looks like:

11.3 Write the lexical entry for the pronunciation of the Englishpast tense (preterite)
suffix -d, and the two-level rules that express the difference in its pronunciation
depending on the previous context. Don’t worry about the spelling rules. Make
sure you correctly handle the pronunciation of the past tenses of the wordsadd,
pat, bake, andbag.

The suffix-d is pronounced as[Id] when following an alveolar stop
like [t] or [d] (e.g.,added, patted), as[t] when following voiceless
sounds (e.g.,baked), and as[d] when following voiced sounds (e.g.,
bagged).

To allow the rules to run in parallel, we can give them mutually
exclusive conditions, and look for these only at the lexicallevel:

d : Id ⇔ [+alveolar-stop]: ˆ #

d : t ⇔

[

−alveolar-stop
−voice

]

: ˆ #

d ⇔

[

−alveolar-stop
+voice

]

: ˆ #

11.4 Write two-level rules for the Yawelmani Yokuts Harmony, Shortening, and Low-
ering phenomena from page 365. Make sure your rules can run inparallel.

The key here is to make sure that the Harmony rule only looks atthe
lexical context, so that changes to the surface forms from the Short-
ening and Lowering rules do not affect it.

[+α high] :

[

+β back
+γ round

]

⇔





+α high
+β back
+γ round



: C∗ ˆ C∗

[

+high
+long

]

: [−high] ⇔

[+long] : [−long] ⇔ C



Chapter 12
Formal Grammars of English

12.1 Draw tree structures for the following ATIS phrases:

The trees below use, as much as possible, the rules from the chapter.
Other tree structures are also possible.

1. Dallas
NP

ProperNoun

Dallas

2. from Denver
PP

NP

ProperNoun

Denver

Prep

from

3. after five p.m.
PP

NP

Nom

Noun

p.m.

Card

five

Prep

after

4. arriving in Washington
GerundVP

PP

NP

ProperNoun

Washington

Prep

in

GerundV

arriving

5. early flights
NP

Nom

Noun

flights

AP

Adj

early

44
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6. all redeye flights
NP

Nom

Noun

flights

Nom

Noun

redeye

Quant

all

7. on Thursday
PP

NP

ProperNoun

Thursday

Prep

on

8. a one-way fare
NP

Nom

Noun

fare

AP

Adj

one-way

Det

a

9. any delays in Denver
NP

Nom

PP

NP

ProperNoun

Denver

Prep

in

Nom

Noun

delays

Quant

any
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12.2 Draw tree structures for the following ATIS sentences:

The trees below use, as much as possible, the rules from the chapter.
Other tree structures are also possible.

1. Does American airlines have a flight between five a.m. and six a.m.?
S

VP

NP

Nom

PP

NP

NP

Nom

Noun

a.m.

Card

six

andNP

Nom

Noun

a.m.

Card

five

Prep

between

Nom

Noun

flight

Det

a

Verb

have

NP

ProperNoun

American airlines

Aux

Does

2. I would like to fly on American airlines.
S

VP

VP

VP

PP

NP

ProperNoun

American airlines

Prep

on

Verb

fly

Inf

to

Verb

like

Verb

would

NP

Pro

I

3. Please repeat that.
S

VP

NP

Pro

that

Verb

repeat

Adv

Please
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4. Does American 487 have a first-class section?
S

VP

NP

Nom

Noun

section

AP

Adj

first-class

Det

a

Verb

have

NP

ProperNoun

American 487

Aux

Does

5. I need to fly between Philadelphia and Atlanta.
S

VP

VP

PP

NP

NP

ProperNoun

Atlanta

andNP

ProperNoun

Philadelphia

Prep

between

Verb

fly

Inf

to

Verb

need

NP

Pro

I

6. What is the fare from Atlanta to Denver?
S

VP

NP

Nom

PP

NP

ProperNoun

Denver

Prep

to

Nom

PP

NP

ProperNoun

Atlanta

Prep

from

Nom

Noun

fare

Det

the

Verb

is

NP

Pro

what
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7. Is there an American airlines flight from Philadelphia to Dallas?
S

VP

NP

Nom

PP

NP

ProperNoun

Dallas

Prep

to

Nom

PP

Prep

NP

ProperNoun

Philadelphia

from

Nom

Noun

flight

Nom

NP

ProperNoun

American airlines

Det

an

Ex

there

Verb

Is

12.3 Augment the grammar rules on page 399 to handle pronouns. Deal properly with
person and case.

S → 3sgAux 3sgNomNP VP
S → Non3sgAux Non3sgNomNP VP

3sgAux → does| has| can| . . .
Non3sgAux → do | have| can| . . .

3sgNomNP → 3sgNomPronoun
3sgNomNP → Det SgNominal
3sgNomPronoun → he| she| it
Non3sgNomNP → Non3sgNomPronoun
Non3sgNomNP → Det PlNominal
Non3sgNomPronoun→ I | you| we | they

VP → Verb (AccNP) (PP)
AccNP → AccPronoun
AccNP → Det Nominal
AccPronoun → me| us| you| him | her | it | them

12.4 Modify the noun phrase grammar of Sections 12.3.3–12.3.4 tocorrectly model
mass nouns and their agreement properties

3sgNP → SgCountNP|MassNP

SgCountNP → SgCountDet SgCountNominal
SgCountDet → a | one| the | any| . . .
SgCountNominal→ flight | pilot | . . .

MassNP → (MassDet) MassNominal
MassDet → some| the| any| . . .
MassNominal → snow| breakfast| . . .
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12.5 How many types ofNPs would the rule on page 396 expand to if we didn’t allow
parentheses in our grammar formalism?

Since there is a binary decision of whether or not to include each of
the five options (Det, Card, Ord, QuantandAP), we would need

25 = 32

rules to express the grammar without a way of denoting optionality.

12.6 Assume a grammar that has manyVP rules for different subcategorizations,
as expressed in Section 12.3.5, and differently subcategorized verb rules like
Verb-with-NP-complement. How would the rule for postnominal relative clauses
(12.5) need to be modified if we wanted to deal properly with examples likethe
earliest flight that you have? Recall that in such examples the pronounthat is
the object of the verbget. Your rules should allow this noun phrase but should
correctly rule out the ungrammaticalS *I get.

RelClause→ (who| that) VP
RelClause→ (who| that) NoObjS
NoObjS → NP NoObjVP
NoObjVP → (Aux) Verb-with-NP-Comp (PP)
NoObjVP → (Aux) Verb-with-S-Comp (NoObjS)
NoObjVP → (Aux) Verb-with-Inf-VP-Comp ((NP) to NoObjVP)

12.7 Does your solution to the previous problem correctly model the NPthe earliest
flight that I can get? How aboutthe earliest flight that I think my mother wants
me to book for her? Hint: this phenomenon is calledlong-distance dependency.

Yes, the optionalAuxelements allow for auxiliaries likecan, and the
recursive uses ofNoObjSandNoObjVPin the last two rules allow for
the long-distance dependencies.

12.8 Write rules expressing the verbal subcategory of English auxiliaries; for exam-
ple, you might have a ruleverb-with-bare-stem-VP-complement→ can.

For the sake of conciseness, we list only one form per verb, but for
example,am, are, wasfollow the same pattern asis.

verb-with-bare-stem-VP-complement→ do | can | could | may |
might | must | shall |
should| will | would

verb-with-gerund-VP-complement → is
verb-with-perfect-VP-complement → has| is
verb-with-infinitive-VP-complement→ ought
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12.9 NPs like Fortune’s officeor my uncle’s marksare calledpossessiveor genitivePossessive

Genitive noun phrases. We can be model possessive noun phrases by treating the sub-NP
like Fortune’sor my uncle’sas a determiner of the following head noun. Write
grammar rules for English possessives. You may treat’s as if it were a separate
word (i.e., as if there were always a space before’s).

NP → (Det) Nominal
NP → ProperNoun
Det → NP ’s
Det → my| a | the| . . .

12.10 Page 393 discussed the need for aWh-NPconstituent. The simplestWh-NPis
one of theWh-pronouns(who, whom, whose, which). The Wh-wordswhatand
whichcan be determiners:which four will you have?, what credit do you have
with the Duke?Write rules for the different types ofWh-NPs.

Wh-NP → Wh-Pro
Wh-NP → Wh-Det Nominal
Wh-Pro → who| whom| whose| which
Wh-Det → what| which

12.11 Write an algorithm for converting an arbitrary context-free grammar into Chom-
sky normal form.

function CHOMSKY-NORMAL -FORM(grammar) returns grammar

; remove epsilon rules
while grammarhas a ruleA → ε whereA is not the start statedo

Remove the ruleA → ε

for each ruleB → β0 . . . βiAβj . . . βN do
Replace the rule withB → β0 . . . βiβj . . . βN

; remove single symbol nonterminal rules
while grammarhas a ruleA → B whereB is a nonterminaldo

Remove the ruleA → B

for each ruleB → β0 . . . βN do
Add the ruleA → β0 . . . βN

if B is not the start symboldo
if no ruleC → γ Bδ existsdo

Remove all rulesB → C

; move terminals to their own rules
for each ruleA → β0β1 . . . βN in grammarwhereN > 1 do

for eachβi whereβi is a terminaldo
Create a new symbolB
Add a ruleB → βi to grammar
Replaceβi in the original rule withB

; ensure there are only two nonterminals per rule
while grammarhas a ruleA → β0 . . . βN−2βN−1βN whereN > 2 do

Create a new symbolB
Add a ruleB → βN−1βN

Replace the original rule withA → β0 . . . βN−2B

return grammar
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Syntactic Parsing

13.1 Implement the algorithm to convert arbitrary context-freegrammars to CNF.

def chomsky_normal_form(grammar):
grammar = set(grammar)
nonterminals = set(rule.head for rule in grammar)

# remove single symbol nonterminal rules
for rule, symbol in _unary_rules(grammar, nonterminals):

grammar.discard(rule)
for rule2 in _rules_headed_by(grammar, symbol):

grammar.add(Rule(rule.head, tuple(rule2.symbols)))
if all(symbol not in rule.symbols for rule in grammar):

for rule2 in _rules_headed_by(grammar, symbol):
grammar.discard(rule2)

# move terminals to their own rules
for rule in list(grammar):

if len(rule.symbols) >= 2:
for i, symbol in enumerate(rule.symbols):

if all(rule.head != symbol for rule in grammar):
rule = _new_symbol(grammar, rule, i, i + 1)

# ensure there are only two nonterminals per rule
for rule in _multi_symbol_rules(grammar):

_new_symbol(grammar, rule, 0, 2)

# return the grammar in CNF
return grammar

# find A -> B rules, allowing concurrent modifications
def _unary_rules(grammar, nonterminals):

while True:
g = ((rule, rule.symbols[0])

for rule in grammar
if len(rule.symbols) == 1
if rule.symbols[0] in nonterminals)

yield g.next()

# find all rules headed by the given symbol
def _rules_headed_by(grammar, symbol):

return [rule for rule in grammar if rule.head == symbol]

# create a new symbol which derives the given span of symbols
def _new_symbol(grammar, rule, start, stop):

symbols = rule.symbols
new_head = ’_’.join(symbols[start:stop]).upper()
new_symbols = symbols[:start] + (new_head,) + symbols[sto p:]
new_rule = Rule(rule.head, new_symbols)
grammar.discard(rule)
grammar.add(new_rule)
grammar.add(Rule(new_head, symbols[start:stop]))
return new_rule

# find A -> BCD... rules, allowing concurrent modifications
def _multi_symbol_rules(grammar):

while True:
g = (rule for rule in grammar if len(rule.symbols) >= 3)
yield g.next()
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Apply your program to theL1 grammar.
# representation of a rule A -> B...C
class Rule(object):

def __init__(self, head, symbols):
self.head = head
self.symbols = symbols
self._key = head, symbols

def __eq__(self, other):
return self._key == other._key

def __hash__(self):
return hash(self._key)

# build a grammar from a string of lines like "X -> YZ | b"
def get_grammar(string):

grammar = set()
for line in string.splitlines():

head, symbols_str = line.split(’ -> ’)
for symbols_str in symbols_str.split(’ | ’):

symbols = tuple(symbols_str.split())
grammar.add(Rule(head, symbols))

return grammar

grammar = get_grammar(’’’\
S -> NP VP | Aux NP VP | VP
NP -> Pronoun | Proper-Noun | Det Nominal
Nominal -> Noun | Nominal Noun | Nominal PP
VP -> Verb | Verb NP | Verb NP PP | Verb PP | VP PP
PP -> Preposition NP
Det -> that | this | a
Noun -> book | flight | meal | money
Verb -> book | include | prefer
Pronoun -> I | she | me
Proper-Noun -> Houston | TWA
Aux -> does
Preposition -> from | to | on | near | through’’’)

grammar_cnf = chomsky_normal_form(grammar)
assert grammar_cnf == get_grammar(’’’\
S -> NP VP | AUX_NP VP | Verb NP | VERB_NP PP | Verb PP | VP PP
S -> book | include | prefer
AUX_NP -> Aux NP
NP -> Det Nominal
NP -> TWA | Houston | I | she | me
Nominal -> Nominal Noun | Nominal PP
Nominal -> book | flight | meal | money
VP -> Verb NP | VERB_NP PP | Verb PP | VP PP
VP -> book | include | prefer
VERB_NP -> Verb NP
PP -> Preposition NP
Det -> this | that | a
Noun -> book | flight | meal | money
Verb -> book | include | prefer
Aux -> does
Preposition -> from | to | on | near | through’’’)

13.2 Implement the CKY algorithm and test it with your convertedL1 grammar.
import collections

def cky_table(grammar, words):
table = collections.defaultdict(set)
for col, word in enumerate(words):

col += 1

# find all rules for the current word
for rule in grammar:

if rule.symbols == (word,):
table[col - 1, col].add(rule.head)
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# for each span of words ending at the current word,
# find all splits that could have formed that span
for row in xrange(col - 2, -1, -1):

for mid in xrange(row + 1, col):

# if the two constituents identified by this
# split can be combined, add the combination
# to the table
for rule in grammar:

if len(rule.symbols) == 2:
sym1, sym2 = rule.symbols
if sym1 in table[row, mid]:

if sym2 in table[mid, col]:
table[row, col].add(rule.head)

return table

words = ’book a flight through Houston’.split()
table = cky_table(grammar_cnf, words)
assert table[0, 1] == set(’S VP Verb Nominal Noun’.split())
assert table[0, 2] == set()
assert table[0, 3] == set(’S VP VERB_NP’.split())
assert table[0, 4] == set()
assert table[0, 5] == set(’S VP VERB_NP’.split())
assert table[1, 2] == set(’Det’.split())
assert table[1, 3] == set(’NP’.split())
assert table[1, 4] == set()
assert table[1, 5] == set(’NP’.split())
assert table[2, 3] == set(’Nominal Noun’.split())
assert table[2, 4] == set()
assert table[2, 5] == set(’Nominal’.split())
assert table[3, 4] == set(’Preposition’.split())
assert table[3, 5] == set(’PP’.split())
assert table[4, 5] == set(’NP’.split())

13.3 Rewrite the CKY algorithm given in Fig. 13.10 on page 440 so that it can accept
grammars that contain unit productions.

Solving this problem requires that each time we add a symbol to a
cell in the table, we also add all symbols to that cell which could have
produced the original symbol through a sequence of unary rules. So,
for example, if we addC to table[i, j], and we have the rulesA→ B

andB → C, then we must also addA andB to table[i, j].

13.4 Augment the Earley algorithm of Fig. 13.13 to enable parse trees to be retrieved
from the chart by modifying the pseudocode for COMPLETER as described on
page 448.

Basically, we add a list of backpointers to each of our states. When
the dot in a rule is advanced, the state that allowed that advance is
appended to the list of backpointers.

procedureCOMPLETER(Sx =(B → γ •, [j,k], Sn . . . Sm))
for each (A → α • B β, [i, j], Sp . . . Sq) in chart[j] do

ENQUEUE((A → α B • β, [i, k], Sp . . . SqSx), chart[k])
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13.5 Implement the Earley algorithm as augmented in the previousexercise. Check it
on a test sentence by using theL1 grammar.

def earley_parse(grammar, words):
nonterminals = set(rule.head for rule in grammar)

# never allow states already seen to be added to the chart
chart = collections.defaultdict(list)
seen = collections.defaultdict(set)
def add(i, rule, dot, start, end, pointers=()):

state = State(rule, dot, start, end, pointers)
if state not in seen[i]:

chart[i].append(state)
seen[i].add(state)

# iteratively build the chart
add(0, Rule(’START’, (’S’,)), 0, 0, 0)
for i in xrange(len(words) + 1):

for state in chart[i]:
complete = state.is_complete()
next_symbol = state.next_symbol()

# Scanner - the state is expecting a word, so if the
# expected word is next in the input, advance the
# rule past the word
if not complete and next_symbol not in nonterminals:

if state.end < len(words):
if next_symbol == words[state.end]:

add(state.end + 1, state.rule,
state.dot + 1, state.start,
state.end + 1, state.pointers)

# Predictor - the state is expecting a constituent C,
# so add new states for all expansions of C, starting
# at the end of the current state
elif not complete and next_symbol in nonterminals:

for rule in grammar:
if rule.head == next_symbol:

add(state.end, rule, 0,
state.end, state.end)

# Completer - the state is complete, advance any
# states that were expecting a state like this (both
# the symbol and the location)
else:

for other in chart[state.start]:
if other.next_symbol() == state.rule.head:

if other.end == state.start:
add(state.end, other.rule,

other.dot + 1,
other.start, state.end,
other.pointers + (state,))

# helper for creating tree strings from states
def to_tree(state):

children = [to_tree(child) for child in state.pointers]
if not children:

children = state.rule.symbols
return ’(%s %s)’ % (state.rule.head, ’ ’.join(children))

# generate all trees from the START rules
for state in chart[i]:

if state.rule.head == ’START’ and state.is_complete():
top, = state.pointers
yield to_tree(top)
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# state class encapsulating rule position, word span and
# pointers for retrieving full parse
class State(object):

def __init__(self, rule, dot, start, end, pointers=()):
self.rule = rule
self.dot = dot
self.start = start
self.end = end
self.pointers = pointers
self._key = rule, dot, start, end, pointers

def __hash__(self):
return hash(self._key)

def __eq__(self, other):
return self._key == other._key

def is_complete(self):
return self.dot == len(self.rule.symbols)

def next_symbol(self):
if self.is_complete():

return None
else:

return self.rule.symbols[self.dot]

grammar = get_grammar(’’’\
S -> NP VP | Aux NP VP | VP
NP -> Pronoun | Proper-Noun | Det Nominal
Nominal -> Noun | Nominal Noun | Nominal PP
VP -> Verb | Verb NP | Verb NP PP | Verb PP | VP PP
PP -> Preposition NP
Det -> that | this | a
Noun -> book | flight | meal | money
Verb -> book | include | prefer
Pronoun -> I | she | me
Proper-Noun -> Houston | TWA
Aux -> does
Preposition -> from | to | on | near | through’’’)

words = ’book through Houston’.split()
assert set(earley_parse(grammar, words)) == set([

’(S (VP (Verb book) ’
’(PP (Preposition through) (NP (Proper-Noun Houston))))) ’,
’(S (VP (VP (Verb book)) ’
’(PP (Preposition through) (NP (Proper-Noun Houston))))) ’])

13.6 Alter the Earley algorithm so that it makes better use of bottom-up information
to reduce the number of useless predictions.

One way to achieve this would be to determine for each nonterminal,
all possible terminals that could appear in the first position of a string
derived from that rule. For example, in theL1 grammar,

FIRST(PP ) ={from, to, on, near, through}

FIRST(V P ) ={book, include, prefer}

The predictor would only insert new states for nonterminalswhose
FIRST set included the current word in the string.

13.7 Attempt to recast the CKY and Earley algorithms in the chart-parsing paradigm.

In the chart-parsing version of CKY, we would first INITIALIZE by
looking up words in the grammar and adding their rules to the agenda.
This is basically the equivalent of filling in the table cellsalong the
diagonal. We then alternate between MAKE-PREDICTIONS, which
generates parent rules from rules in the table, and the FUNDAMENTAL
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rule, which takes pairs of these rules and completes them. The agenda
would make sure we consider rules in the same order as the traditional
CKY algorithm.

In the chart-parsing version of Earley, we again INITIALIZE by
adding all the part of speech rules, basically the equivalent of SCAN-
NER. Then MAKE-PREDICTIONSdoes what PREDICTORused to do,
and the FUNDAMENTAL rule does what COMPLETERused to do. The
agenda would basically be a sequence of queues, one for each word,
and where we process all edges for each word in the order they were
produced.

13.8 Discuss the relative advantages and disadvantages of partial versus full parsing.

Partial parsing is generally much faster than full parsing,but pro-
vides less syntactic detail. Thus, for a task where only a fewpieces
of surface level syntax are necessary, e.g., named entity recognition,
partial parsing can provide similar results to a full parse in substan-
tially reduced times. However, for a task where a great amount of
syntactic detail is needed, e.g., construction of logical forms, even
cascaded partial parsers will not produce as complete information as
a full parser.

13.9 Implement a more extensive finite-state grammar for noun groups by using the
examples given in Section 13.5 and test it on someNPs. Use an on-line dictio-
nary with parts-of-speech if available; if not, build a morerestricted system by
hand.

Below, we useNN to stand forNN or NNSor NNP.
NP → (DT) (CD) JJ∗ (VBG) NN∗ NN
NP → (DT) (CD) NN∗ NN CC NN∗ NN

These rules cover NPs like the following found in the Penn Treebank:
one Cray Computer share
an Italian state-owned holding company
the Cray-3 research and development expenses

13.10 Discuss how to augment a parser to deal with input that may be incorrect, for
example, containing spelling errors or mistakes arising from automatic speech
recognition.

One approach might be to take the partial syntactic structures that the
parser was able to identify and join them together to form full parses.
These full parses would necessarily introduce new rules, sothis ap-
proach would likely require searching through the space of possible
new rules to find a minimal set that produces a full parse.

Another approach, and perhaps the more common one, would be
to use one of the probabilistic approaches discussed in Chapter 14.



Chapter 14
Statistical Parsing

14.1 Implement the CKY algorithm.

import collections
def prob_cky(grammar, words):

ddict = collections.defaultdict
probs = ddict(lambda: ddict(lambda: 0.0))
backs = ddict(lambda: {})

# helpers for getting rules that produce the given symbols
# and for getting heads of rules with probability > 0
def get_rules( * symbols):

for rule in grammar:
if rule.symbols == symbols:

yield rule
def probs_positive(row, col):

for head in probs[row, col]:
if probs[row, col][head] > 0.0:

yield head

# for each word in the input, update the table cells in the
# corresponding column, from bottom to top
for col, word in enumerate(words):

col += 1

# find rules that could have produced the word directly
for rule in get_rules(word):

probs[col - 1, col][rule.head] = rule.prob
backs[col - 1, col][rule.head] = None, None, None

# create a new span when two existing spans meet at their
# endpoints and a rule producing those two symbols exists
for row in xrange(col - 2, -1, -1):

for mid in xrange(row + 1, col):
for head1 in probs_positive(row, mid):

for head2 in probs_positive(mid, col):
for rule in get_rules(head1, head2):

# combine rule and span probabilities
prob = rule.prob
prob * = probs[row, mid][head1]
prob * = probs[mid, col][head2]

# keep higher probability rules
if prob > probs[row, col][rule.head]:

probs[row, col][rule.head] = prob
back = mid, head1, head2
backs[row, col][rule.head] = back

# helper for converting the backpointers to a tree
def get_tree(row, col, symbol):

mid, head1, head2 = backs[row, col][symbol]
if mid is head1 is head2 is None:

return ’(%s %s)’ % (symbol, words[row])
else:

tree1 = get_tree(row, mid, head1)
tree2 = get_tree(mid, col, head2)
return ’(%s %s %s)’ % (symbol, tree1, tree2)

# return tree and expected probability
return get_tree(0, len(words), ’S’), probs[0, len(words) ][’S’]
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14.2 Modify the algorithm for conversion to CNF from Chapter 13 tocorrectly han-
dle rule probabilities. Make sure that the resulting CNF assigns the same total
probability to each parse tree.

The three basic CNF transformation rules, and their corresponding
probability calculations (shown in brackets following each rule):

• ReplaceA → B [p1] rules withA → β0 . . . βN [p1 ∗ p2] rules
for eachB → β0 . . . βN [p2] rule.
• ReplaceA → β0 . . . βibβjβN [p1] rules (whereb is a terminal)

with A→ β0 . . . βiBβjβN [p1] andB → b [1.0] rules (whereB
is a new symbol).
• ReplaceA → β0 . . . βN−2βN−1βN [p1] rules (whereN > 2)

with A → β0 . . . βN−2B [p1] andB → βN−1βN [1.0] rules
(whereB is a new symbol).

14.3 Recall that Exercise 13.3 asked you to update the CKY algorithm to handle unit
productions directly rather than converting them to CNF. Extend this change to
probabilistic CKY.

def prob_cky(grammar, words):
ddict = collections.defaultdict
probs = ddict(lambda: ddict(lambda: 0.0))
backs = ddict(lambda: {})

# helpers for getting rules that produce the given symbols
# and for getting heads of rules with probability > 0
def get_rules( * symbols):

for rule in grammar:
if rule.symbols == symbols:

yield rule
def probs_positive(row, col):

for head in probs[row, col]:
if probs[row, col][head] > 0.0:

yield head

# helper for adding heads to table cells that could have
# been generated using a chain of unary rules
def add_unaries(row, col):

# iterate over a queue with the heads from the table cell
seen = set()
heads_todo = set(probs_positive(row, col))
while heads_todo:

head = heads_todo.pop()

# add to the queue rules that could have generated
# this symbol, that were not previously seen
for rule in get_rules(head):

if rule not in seen:
seen.add(rule)
heads_todo.add(rule.head)

# combine A -> B and B -> C rules and add the
# new A -> C rule to the table
prob = rule.prob * probs[row, col][head]
if prob > probs[row, col][rule.head]:

probs[row, col][rule.head] = prob
back = None, head, None
backs[row, col][rule.head] = back

# for each word in the input, update the table cells in the
# corresponding column, from bottom to top
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for col, word in enumerate(words):
col += 1

# find rules that could have produced the word directly
for rule in get_rules(word):

probs[col - 1, col][rule.head] = rule.prob
backs[col - 1, col][rule.head] = None, None, None

# propagate any unary rules
add_unaries(col - 1, col)

# create a new span when two existing spans meet at their
# endpoints and a rule producing those two symbols exists
for row in xrange(col - 2, -1, -1):

for mid in xrange(row + 1, col):
for head1 in probs_positive(row, mid):

for head2 in probs_positive(mid, col):
for rule in get_rules(head1, head2):

# combine rule and span probabilities
prob = rule.prob
prob * = probs[row, mid][head1]
prob * = probs[mid, col][head2]

# keep higher probability rules
if prob > probs[row, col][rule.head]:

probs[row, col][rule.head] = prob
back = mid, head1, head2
backs[row, col][rule.head] = back

# propagate any unary rules
add_unaries(row, col)

# helper for converting the backpointers to a tree
def get_tree(row, col, symbol):

mid, head1, head2 = backs[row, col][symbol]
if mid is head1 is head2 is None:

return ’(%s %s)’ % (symbol, words[row])
elif mid is head2 is None:

tree = get_tree(row, col, head1)
return ’(%s %s)’ % (symbol, tree)

else:
tree1 = get_tree(row, mid, head1)
tree2 = get_tree(mid, col, head2)
return ’(%s %s %s)’ % (symbol, tree1, tree2)

# return tree and expected probability
return get_tree(0, len(words), ’S’), probs[0, len(words) ][’S’]
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14.4 Fill out the rest of the probabilistic CKY chart in Fig. 14.4.

Det: .4

[0, 1]

NP: .0024

[0, 2] [0, 3] [0, 4]

S: 2.304e-8

[0, 5]

N: .02

[1, 2] [1, 3] [1, 4] [1, 5]

V: .05

[2, 3] [2, 4]

VP: 1.2e-5

[2, 5]

Det: .4

[3, 4]

NP: .0012

[3, 5]

N: .01

[4, 5]

14.7 Implement the PARSEVAL metrics described in Section 14.7. Next, either use a
treebank or create your own hand-checked parsed testset. Now use your CFG (or
other) parser and grammar, parse the test set and compute labeled recall, labeled
precision, and cross-brackets.

The code below implements the PARSEVAL metrics.
from __future__ import division
def parseval(expected_trees, predicted_trees):

correct = 0
expected = 0
predicted = 0
crossed = 0

# count numbers of correct, expected and predicted
# constituents, as well as number of crossing brackets
tree_pairs = zip(expected_trees, predicted_trees)
for expected_tree, predicted_tree in tree_pairs:

# convert trees to spans
expected_spans = get_spans(expected_tree)
predicted_spans = get_spans(predicted_tree)
expected += len(expected_spans)
predicted += len(predicted_spans)

# look for matching spans and crossing brackets
for predicted_span in predicted_spans:

had_match = had_crossing = False
for expected_span in expected_spans:

# look for matching spans
if predicted_span == expected_span:

had_match = True

# look for crossing brackets
_, s1, e1 = predicted_span
_, s2, e2 = expected_span
if s1 < s2 < e1 < e2 or s2 < s1 < e2 < e1:

had_crossing = True

# update correct and crossing bracket counts
correct += had_match
crossed += had_crossing
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# calculate precision, recall, F-measure and crossing brac kets
precision = correct / predicted
recall = correct / expected
f = 2 * precision * recall / (precision + recall)
crossing_brackets = crossed / predicted
return precision, recall, f, crossing_brackets

def get_spans(tree, offset=0):
start = offset

# spans of terminals are length 1
if not tree:

offset += 1

# spans of nonterminals are determined from their children
spans = []
for child in tree:

spans.extend(get_spans(child, offset))
offset = spans[-1][-1]

# add the span for this subtree and return the span list
spans.append((tree.tag, start, offset))
return spans



Chapter 15
Features and Unification

15.1 Draw the DAGs corresponding to the AVMs given in Examples 15.1–15.2.

Example 15.1

Example 15.2

15.2 Consider the following examples from the Berkeley Restaurant Project (BERP),
focusing on their use of pronouns.

I want to spend lots of money.
Tell me about Chez Panisse.
I’d like to take her to dinner.
She doesn’t like Italian.

Assuming that these pronouns all belong to the categoryPro, write lexical and
grammatical entries with unification constraints that block the following exam-
ples.

*Me want to spend lots of money.
*Tell I about Chez Panisse.
*I would like to take she to dinner.
*Her doesn’t like Italian.

S → (NP) (Aux) VP

〈NP CASE〉 = nominative

VP → V NP . . .

〈NP CASE〉 = accusative

NP → Pro

〈Pro CASE〉 = 〈NP CASE〉
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15.3 Draw a picture of the subsumption semilattice corresponding to the feature struc-
tures in Examples 15.3 to 15.7. Be sure to include the most general feature struc-
ture [].

An arrow from nodeA to nodeB indicates thatB v A.

15.4 Consider the following examples.

The sheep are baaaaing.
The sheep is baaaaing.

Create appropriate lexical entries for the wordsthe, sheep, andbaaaaing. Show
that your entries permit the correct assignment of a value totheNUMBER feature
for the subjects of these examples, as well as their various parts.

Since the text introduced agreement features for determiners, nouns,
auxiliaries and verbs, the desired outcome is:

• ForThe sheep is baaaaing, all words haveNUMBER = sg

• ForThe sheep are baaaaing, all words haveNUMBER = pl

For the, sheepandbaaing, we leave the agreements unspecified. Then
for is andarewe specify singular and plural agreements, respectively:

Aux → is
〈AuxAGREEMENT NUMBER〉 = sg

Aux → are
〈AuxAGREEMENT NUMBER〉 = pl

We also need to introduce a new grammar rule:

VP → Aux Verb
〈AuxAGREEMENT〉 = 〈VerbAGREEMENT〉
〈VP AGREEMENT〉 = 〈VerbAGREEMENT〉

Then unification should take care of the rest:

• TheVP → Aux Verbrule from above requiresVP, AuxandVerb
to have the sameAGREEMENT

• TheNP → Det Nominalrule from the chapter requiresNP, Det
andNominalto have the sameAGREEMENT

• TheS → NP VPrule gives from the chapter requiresS, NP and
VP to have the sameAGREEMENT

Thus, for our sentences, theAux, Verb, Det andNounall must have
the same agreement. So when the verb isis, all NUMBER features will
besg, and when the verb isare, all NUMBER features will bepl.
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15.5 Create feature structures expressing the differentSUBCAT frames forwhile and
duringshown on page 506.





ORTH while
CAT Prep
HEAD

[

SUBCAT 〈[CAT S]〉
]









ORTH during
CAT Prep
HEAD

[

SUBCAT 〈[CAT NP]〉
]





15.6 Alter the pseudocode shown in Figure 15.11 so that it performs the more radical
kind of unification-based parsing described on page 519.

function EARLEY-PARSE(words, grammar) returns chart
for (X0 → α, dagX0

) in grammardo
if dagX0

(〈 X0 CAT 〉) = S then
ADDTOCHART((γ → • X0 , [0, 0], dagγ ), chart[0])

for i from 0 to LENGTH(words) do
for each statein chart[i] do

if INCOMPLETE?(state)
if NEXT-CAT(state) is a part of speechdo

SCANNER(state)
else

PREDICTOR(state)
else

COMPLETER(state)

procedure PREDICTOR((X0 → α • X1 β, [i, j], dagX0
))

for each (X2 → γ, dagX2
) in grammardo

if new-dag←UNIFY-STATES(dagX1
, dagX2

, X0) 6= Failsthen
ADDTOCHART((X2 → • γ, [j, j], new-dag), chart[j])

procedure SCANNER((X0 → α • X1 β, [i, j], dagX0
))

if dagX1
(〈X1 CAT 〉) ∈ PARTS-OF-SPEECH(words[j]) then

ADDTOCHART((X1 → words[j] •, [j, j+1], dagX1
), chart[j+1])

procedure COMPLETER((X0 → γ •, [j, k], dagX0
))

for each (X1 → α • X2 β, [i, j], dagX1
) in chart[j] do

if new-dag←UNIFY-STATES(dagX0
, dagX1

, X1) 6= Failsthen
ADDTOCHART((X1 → α X0 • β, [i, k], new-dag), chart[k])
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15.7 Consider the following problematic grammar suggested by Shieber (1985).

S → T

〈T F〉 = a

T1 → T2 A

〈T1 F〉 = 〈T2 F F〉

S → A

A → a

Show the firstSstate entered into the chart by using your modifiedPREDICTOR

from the previous exercise, then describe any problematic behavior displayed by
PREDICTORon subsequent iterations. Discuss the cause of the problem and how
it might be remedied.

The first two rules in the grammar look like:

X0 ← X1




X0

[

CAT S
]

X1

[

CAT T

F a

]





X0 → X1X2












X0

[

CAT T

F 1

]

X1

[

CAT T

F
[

F : 1
]

]

X2

[

CAT A
]













So the first state put on the chart is:

γ → •X0, [0, 0],





X0

[

CAT S
]

X1

[

CAT T

F a

]





This state is incomplete, so we go to the PREDICTOR and unify this
state with the second rule, adding the new state:

X0 → •X1X2, [0, 0],













X0

[

CAT T

F 1 a

]

X1

[

CAT T

F
[

F 1
]

]

X2

[

CAT A
]













But the PREDICTOR then then unifies this again with the second rule,
adding the new state:

X0 → •X1X2, [0, 0],













X0

[

CAT T

F 1 a

]

X1

[

CAT T

F
[

F
[

F 1
] ]

]

X2

[

CAT A
]













We’re now stuck in a loop where we create a new state, unify it with
rule two, and produce a new state that will unify with rule twoagain.

To solve this problem, we need to restrict our view to only part of
the dag instead of the whole thing. Then instead of the PREDICTOR

unifying whole dags, it would just unify the sub-dags containing the
category information.
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15.8 Using the list approach to representing a verb’s subcategorization frame, show
how a grammar could handle any number of verb subcategorization frames with
only the following twoVP rules. More specifically, show the constraints that
would have to be added to these rules to make this work.

VP → Verb

VP → VP X

The solution to this problem involves thinking about a recursive walk down
a verb’s subcategorization frame. This is a hard problem; you might consult
Shieber (1986) if you get stuck.

Under these rules, each element of a verb’s subcategorization frame is
attached to its ownVP. So each time we use theVP→ VP Xrule, the
newly introducedVP should contain one more category expected by
the verb. We can do this recursively, by defining the subcategorization
of the childVP in terms of its parent.

This approach requires decomposing the subcategorizationlists,
so we introduce the syntax〈X〉 + Y to mean thatX is the first item in
a list andY is the remaining items.









VP

[

CAT VP
HEAD 1

]

Verb

[

CAT Verb
HEAD 1

]























VP

[

CAT VP
HEAD

[

SUBCAT 1
]

]

VP

[

CAT VP

HEAD
[

SUBCAT
〈

2
〉

+ 1
]

]

X
[

CAT 2
]















15.9 Page 524 showed how to use typed feature structures to represent constituency.
Use that notation to represent rules 15.11, 15.12, and 15.13shown on page 501.









CAT VP
HEAD 1

DTRS

〈[

CAT Verb
HEAD 1

]

,
[

CAT NP
]

〉

















CAT NP
HEAD 1

DTRS

〈[

CAT Det
HEAD

[

AGREE 2
]

]

,

[

CAT Nominal
HEAD 1

[

AGREE 2
]

]〉

















CAT Nominal
HEAD 1

DTRS

〈[

CAT Noun
HEAD 1

]〉











Chapter 16
Language and Complexity

16.1 Is the languageanb2an context free?

Yes. It can be generated with the following context free grammar:

S → aSa
S → bb

Technically, to confirm that the language is context free, wemust also
show that it is not a regular language. See Exercise 16.3 for details.

16.2 Use the pumping lemma to show this language is not regular:

L = xnyn−1likes tuna fish, x ∈ A, y ∈ B

The pumping lemma states that if this language is regular, then there
exist stringsa, b andc such thatb 6= ε andabnc ∈ L for n ≥ 0. Given
our language, there are four possible assignments ofa, b andc:
• b is all xs:

a = xq

b = xr

c = xsytlikes tuna fish

By the pumping lemma, bothxqxrxsyt andxq(xr)2xsyt must
be in the language. Since strings in our language look like
xnyn−1, we must haveq + r + s = t− 1 = q + 2r + s. But then
r = 0 andy = ε, failing they 6= ε requirement of the pumping
lemma.
• b is all ys:

a = xqyr

b = ys

c = ytlikes tuna fish

By the pumping lemma, bothxqyrysyt andxqyr(ys)2yt must be
in the language. Since strings in our language look likexnyn−1,
we must haver+ s+ t−1 = q = r+2s+ t−1. But thenr = 0
andy = ε, failing they 6= ε requirement of the pumping lemma.
• b is bothxs andys:

a = xq

b = xrys

c = ytlikes tuna fish

By the pumping lemma,xq(xrys)2yt = xqxrysxrysyt must be
in the language. But this string allowsxs to follow ys, which is
not possible in our language.
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• b containslikes tuna fish. By the pumping lemma, we should be
able to generatebn for any positiven, but our language is limited
to a singlelikes tuna fish, sob cannot containlikes tuna fish.

Thus, since no string in our language can be divided intoa, b andc

appropriately for the pumping lemma, our language is not regular.

16.3 Partee et al. (1990) showed that the languagexxR, x ∈ a, b∗ is not regular,
by intersecting it with the regular languageaa∗bbaa∗. The resulting language
is anb2an. Use the pumping lemma to show that this language is not regular,
completing the proof thatxxR, x ∈ {a, b}∗ is not regular.

By the pumping lemma, there should exist stringsx, y andz such that
y 6= ε andxynz ∈ anb2an for n ≥ 0. Given our language, there are
three possible assignments ofx, y andz:
• y is all as and before the firstb:

x = aq

y = ar

z = asb2at

By the pumping lemma, bothaqarasb2at and aq(ar)2asb2at

must be in the language. Since strings in our language look like
anb2an, we must haveq + r + s = t = q + 2r + s. But then
r = 0 andy = ε, failing they 6= ε requirement of the pumping
lemma.
• y is all as and is after the lastb:

x = aqb2ar

y = as

z = at

By the pumping lemma, bothaqb2arasat and aqb2ar(as)2at

must be in the language. Since strings in our language look like
anb2an, we must haver + s + t = q = r + 2s + t. But then
r = 0 andy = ε, failing they 6= ε requirement of the pumping
lemma.
• y contains anybs. By the pumping lemma, we should be able to

generateyn for any positiven, but our language is limited to a
maximum of 2bs, soy cannot containbs.

So the language is not a regular language, and since it can be ex-
pressed with a context free grammar, it is a context free language.

16.4 Build a context-free grammar for the language

L = {xxR|x ∈ {a, b}∗}

Given thatxR meansx reversed, the following grammar producesL:

S → aSa
S → bSb
S → ε



Chapter 17
The Representation of Meaning

17.1 Peruse your daily newspaper for three examples of ambiguoussentences or head-
lines. Describe the various sources of the ambiguities.

The following ambiguous headlines are from BBC news articles:

US offensive in Euphrates regionEither offensiveis an adjective,
in which case the US has acted inappropriately near the Eu-
phrates, oroffensiveis a noun, in which case the US is deploying
troops there.

Baby doctor cleared of misconductEither Baby indicates the age
of doctor, in which case a very young doctor was cleared of mis-
conduct, orBaby indicates the type ofdoctor, in which case a
doctor who takes care of infants was cleared.

PM vows to stand by Afghanistan Eitherstand byis used literally,
in which case the prime minister will be physically present some-
where near the country of Afghanistan, orstand byis used figura-
tively, in which case the prime minister will support the decisions
made by the governing body of Afghanistan.

17.2 Consider a domain in which the wordcoffeecan refer to the following concepts
in a knowledge-based system: a caffeinated or decaffeinated beverage, ground
coffee used to make either kind of beverage, and the beans themselves. Give
arguments as to which of the following uses of coffee are ambiguous and which
are vague.

1. I’ve had my coffee for today.

This use is vague - it is clear that the beverage is what the speaker
had, but it is not clear whether the beverage was caffeinatedor
decaffeinated.

2. Buy some coffee on your way home.

This use is ambiguous - this could be a request to buy beans,
ground coffee, or beverages.

3. Please grind some more coffee.

This use is vague - it is clear that coffee beans are what is to be
ground, but it is not clear whether the beans should be caffeinated
or decaffeinated.
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17.3 The following rule, which we gave as a translation for Example 17.26, is not a
reasonable definition of what it means to be a vegetarian restaurant.

∀xV egetarianRestaurant(x) ⇒ Serves(x, V egetarianFood)

Give aFOL rule that better defines vegetarian restaurants in terms of what they
serve.

∀xV egetarianRestaurant(x) ⇒

Serves(x, V egetarianFood) ∧

(∀yServes(x, y) ⇒ Is(y, V egetarianFood))

17.4 Give FOL translations for the following sentences:

1. Vegetarians do not eat meat.

∀xV egetarian(x) ⇒ ¬Eats(x, Meat)

2. Not all vegetarians eat eggs.

∃xV egetarian(x) ∧ ¬Eats(x, Eggs)

17.5 Give a set of facts and inferences necessary to prove the following assertions:

1. McDonald’s is not a vegetarian restaurant.

2. Some vegetarians can eat at McDonald’s.

Don’t just place these facts in your knowledge base. Show that they can be
inferred from some more general facts about vegetarians andMcDonald’s.

The initial knowledge base:

∀xServes(x, Meat) ⇒ ¬V egetarianRestaurant(x)
∀xServes(x, V egetables) ⇒ ∃yV egetarian(y) ∧ CanEatAt(x, y)
Serves(McDonalds, Meat)
Serves(McDonalds, V egetables)

Inferring that McDonald’s is not a vegetarian restaurant:

Serves(McDonalds, Meat)
∀xServes(x, Meat) ⇒ ¬V egetarianRestaurant(x)
¬V egetarianRestaurant(McDonalds)

Inferring that some vegetarians can eat at McDonald’s:

Serves(McDonalds, V egetables)
∀xServes(x, V egetables) ⇒ ∃yV egetarian(y) ∧ CanEatAt(x, y)
∃yV egetarian(y) ∧ CanEatAt(McDonalds, y)
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17.6 For the following sentences, giveFOL translations that capture the temporal re-
lationships between the events.

1. When Mary’s flight departed, I ate lunch.

∃d, e, f, id, ie, nd, ne

Flight(f) ∧ Passenger(f, Mary) ∧

Departing(d) ∧Departer(d, f) ∧

Eating(e) ∧ Eater(e, Speaker) ∧Meal(e, Lunch)∧

IntervalOf(d, id) ∧ IntervalOf(e, ie) ∧

EndPoint(id, nd) ∧ StartPoint(ie, ne) ∧ Precedes(nd, ne)

2. When Mary’s flight departed, I had eaten lunch.

∃d, e, f, id, ie, nd, ne

Flight(f) ∧ Passenger(f, Mary) ∧

Departing(d) ∧Departer(d, f) ∧

Eating(e) ∧ Eater(e, Speaker) ∧Meal(e, Lunch)∧

IntervalOf(d, id) ∧ IntervalOf(e, ie) ∧

StartPoint(id, nd) ∧ EndPoint(ie, ne) ∧ Precedes(ne, nd)

17.7 On page 560, we gave the representationNear(Centro, Bacaro) as a transla-
tion for the sentenceCentro is near Bacaro. In a truth-conditional semantics, this
formula is either true or false given some model. Critique this truth-conditional
approach with respect to the meaning of words likenear.

Words likenear require a particular frame of reference to be inter-
preted correctly. For example, if the distance betweenCentro and
Bacarowas around 5 miles, it might be appropriate to consider them
neareach other if traveling by car, but not if traveling by foot. Thus
using predicates likeNear(x, y) where for a given two places the
predicate must be either true or false, is only practical if there is only
a single frame of reference that the system must understand.



Chapter 18
Computational Semantics

18.1 Develop a set of grammar rules and semantic attachments to handle predicate
adjectives such as the following:

1. Flight 308 from New York is expensive.

2. Murphy’s restaurant is cheap.

To produce representations likeCheap(MurphysRestaurant) we can
use the following rules:

VP → Verb Adj {Verb.sem(Adj.sem)}
Verb → is {λP.λx.P (x)}
Adj → expensive {Expensive}
Adj → cheap {Cheap}

Applying these rules to the latter sentence looks like:

λx.x(MurphysRestaurant)(λP.λx.P (x)(Cheap))
= λx.x(MurphysRestaurant)(λx.Cheap(x))
= Cheap(MurphysRestaurant)

18.2 Develop a set of grammar rules and semantic attachments to handle so-called
control verbsas in the following:

1. Francodecidedto leave.

2. Nicolastold Franco to go to Frasca.

The first of these is an example of subject control—Francoplays the role of the
agent for bothdecideand leave. The second is an example of object control—
thereFranco is the person being told and the agent of the going event. The
challenge in creating attachments for these rules is to properly incorporate the
semantic representation of a single noun phrase into two roles.

One approach to this problem is to give predicates likedecideand
tell two extra parameters - one for the other event they take as an
argument, and one which is that event’s predication. In thisway, the
control predicates can pass all the necessary information on to their
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controlled predicates. The following rules take that approach:

S→ NP VP {NP.sem(VP.sem)}

VP→ Verb to VP {Verb.sem(VP.sem)}

VP→ Verb NP to VP {NP.sem(Verb.sem)(VP.sem)}

VP→ Verb to NP {NP.sem(Verb.sem)}

Verb→ leave {λx.λe.Leaving(e) ∧ Leaver(e, x)}

Verb→ go {λw.λxλe.Going(e) ∧Goer(e, x) ∧ Destination(e, w)}

Verb→ decided {λPλx.λdλe.P (x)(e)

∧ Deciding(d) ∧ Decider(d, x) ∧ Decision(d, e)}

Verb→ told {λw.λPλx.λdλe.P (w)(e) ∧ Telling(d)

∧ Hearer(d, w) ∧ Speaker(d, x) ∧Message(d, e)}

Note that we had to useλ for events instead of∃ as before. This was
necessary to make sure that both the controlling and controlled verbs
referred to the same events. As a result, when the semantic analysis
of a sentence is complete, we should read any remainingλ as∃.

Here is the derivation of the VPgo to Frascausing these rules:

NP.sem(Verb.sem)

λx.x(Frasca)(λw.λxλe.Going(e) ∧Goer(e, x) ∧Destination(e, w))

λw.λxλe.Going(e) ∧Goer(e, x) ∧ Destination(e, w)(Frasca)

λxλe.Going(e) ∧Goer(e, x) ∧ Destination(e, Frasca)

And here is the derivation of the VPtold Franco to go to Frasca:

NP.sem(Verb.sem)(VP.sem)

λx.x(Franco)(Verb.sem)(VP.sem)

Verb.sem(Franco)(VP.sem)

λw.λPλx.λdλe.P (w)(e) ∧ Telling(d) ∧Hearer(d, w)

∧Speaker(d, x) ∧Message(d, e)(Franco)(VP.sem)

λPλx.λdλe.P (Franco)(e) ∧ Telling(d) ∧ Hearer(d, Franco)

∧Speaker(d, x) ∧Message(d, e)(VP.sem)

λPλx.λdλe.P (Franco)(e) ∧ Telling(d) ∧ Hearer(d, Franco) ∧ Speaker(d, x)

∧Message(d, e)(λxλe.Going(e) ∧Goer(e, x) ∧ Destination(e, Frasca))

λx.λdλe.Going(e) ∧Goer(e, Franco) ∧Destination(e, Frasca) ∧ Telling(d)

∧Hearer(d, Franco) ∧ Speaker(d, x) ∧Message(d, e)
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18.3 None of the attachments given in this chapter provide temporal information.
Augment a small number of the most basic rules to add temporalinformation
along the lines sketched in Chapter 17. Use your rules to create meaning repre-
sentations for the following examples:

1. Flight 299 departed at 9 o’clock.
2. Flight 208 will arrive at 3 o’clock.
3. Flight 1405 will arrive late.

We first define some new temporal predicates for convenience:

∀d, eBefore(d, e)→ ∃i, jEnd(d, i) ∧ Start(e, j) ∧ Precedes(i, j)

∀d, eAt(d, e)→ ∃i, jStart(d, i) ∧ Start(e, i) ∧ End(d, j) ∧ End(e, j)

And now the rules for creating temporal representations:

S→ NP VP {λe.NP.sem(VP.sem(e))}

VP→ Aux VP {Aux.sem(VP.sem)}

VP→ Verb PP {PP.sem(Verb.sem)}

VP→ Verb Adv {Adv.sem(Verb.sem)}

PP→ Prep NP {NP.sem(Prep.sem)}

Verb→ Verb Suffix {Suffix.sem(VP.sem)}

Verb→ depart {λe.λx.Departing(e) ∧ Departer(e, x)}

Verb→ arrive {λe.λx.Arriving(e) ∧ Arriver(e, x)}

Aux→ will {λP.λe.Before(Now, e) ∧ P (e)}

Suffix→ -ed {λP.λe.Before(e, Now) ∧ P (e)}

Prep→ at {λx.λP.λe.At(e, x) ∧ P (e)}

Adv→ late {λP.λe.Before(ExpectedInterval(e), e) ∧ P (e)}

To see these rules in action, let’s derive the representation for the
second sentence. We’ll start with the PPat 3 o’clock:

NP.sem(Prep.sem)

λx.x(3:00)(Prep.sem)

λx.x(3:00)(λx.λP.λe.At(e, x) ∧ P (e))

λP.λe.At(e, 3:00) ∧ P (e)

Now the VParrive at 3 o’clock:

PP.sem(Verb.sem)

PP.sem(λe.λx.Arriving(e) ∧ Arriver(e, x))

λP.λe.At(e, 3:00) ∧ P (e)(λe.λx.Arriving(e) ∧ Arriver(e, x))

λe.At(e, 3:00) ∧ λx.Arriving(e) ∧ Arriver(e, x)

λe.λx.At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x)
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Now the VPwill arrive at 3 o’clock:

Aux.sem(VP.sem)

Aux.sem(λe.λx.At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x))

λP.λe.Before(Now, e) ∧ P (e)(λe.λx.At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x))

λe.Before(Now, e) ∧ λx.At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x)

λe.λx.Before(Now, e) ∧ At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x)

And finally the whole sentence:

λe.NP.sem(VP.sem(e))

λe.NP.sem(λe.λx.Before(Now, e) ∧ At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x)(e))

λe.NP.sem(λx.Before(Now, e) ∧ At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x))

λe.λx.x(F208)(λx.Before(Now, e) ∧ At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x))

λe.(λx.Before(Now, e) ∧ At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, x))(F208)

λe.Before(Now, e) ∧ At(e, 3:00) ∧ Arriving(e) ∧ Arriver(e, F208)

18.4 As noted in Chapter 17, the present tense in English can be used to refer to
either the present or the future. However, it can also be usedto express habitual
behavior, as in the following:

1. Flight 208 leaves at 3 o’clock.

This could be a simple statement about today’s Flight 208, oralternatively it
might state that this flight leaves at 3 o’clock every day. Create aFOL mean-
ing representation along with appropriate semantic attachments for this habitual
sense.

Assuming a suitably definedDuring predicate, one possible solution
is to have the present tense introduce a universal quantifierover days:

Verb→ Verb PRES {λe.∀dDay(d) ⇒ Verb.sem(e) ∧During(e, d)}

This says roughly that the event occurs (at least once) everyday. Of
course, this solution is not very general, as other uses of habituals
may require longer or shorter spans than a day.

18.5 Implement an Earley-style semantic analyzer based on the discussion on page
604.

It may simplify the implementation to use a language that explicitly
supportsλ and λ-reduction, e.g. lisp, scheme, python, etc. Then
the semantic attachments can just be normalλ-functions, and passed
around and applied as usual.

The key to making such a type-driven approach work is the ability
to reason not only about the types of the semantic attachments, but
also about the types of the values that result from theλ-reductions
(the types of the return values).
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18.6 It has been claimed that it is not necessary to explicitly list the semantic attach-
ment for most grammar rules. Instead, the semantic attachment for a rule should
be inferable from the semantic types of the rule’s constituents. For example, if a
rule has two constituents, where one is a single-argumentλ-expression and the
other is a constant, then the semantic attachment must applythe λ-expression
to the constant. Given the attachments presented in this chapter, does thistype-
driven semanticsseem like a reasonable idea? Explain your answer.

Using this approach would be difficult given that even noun phrases
are treated asλ-expressions in this chapter. Consider the simple sen-
tenceMaharani closed. The representations from the chapter look
like:

λx.x(Maharani)

λx.Closed(x)

Now, when we see theNP VPconstituent, there is no obvious way to
guess whether we apply the verb function to the noun (wrong) or the
noun function to the verb (right) because bothMaharaniandClosed
have the same type: a single-argumentλ-expression.

18.8 Using a phrasal search on your favorite Web search engine, collect a small corpus
of the tip of the icebergexamples. Be certain that you search for an appropriate
range of examples (i.e., don’t just search for “the tip of theiceberg”). Analyze
these examples and come up with a set of grammar rules that correctly accounts
for them.

Some examples from the web:

• the tip of an iceberg of{cool designs,tremendous proportions}

• the tip of{fraud,xenophobic,very large. . .} iceberg

• the tip of{a,the,my,. . .} iceberg

• the{visible,. . .} tip of the iceberg

One set of rules that could account for these examples:

NP→ TipNP of IcebergNP {TipNP.sem(IcebergNP.sem)}

TipNP→ Det TipNominal {Det.sem(TipNominal.sem)}

TipNominal→ AdjP TipNominal {AdjP.sem(TipNominal.sem)}

TipNominal→ tip {λx.Beginning(x)}

IcebergNP→ Det IcebergNominal {Det.sem(IcebergNominal.sem)}

IcebergNominal→ AdjP IcebergNominal {AdjP.sem(IcebergNominal.sem)}

IcebergNominal→ NP IcebergNominal {NP.sem(IcebergNominal.sem)}

IcebergNominal→ IcebergNominal PP {PP.sem(IcebergNominal.sem)}

IcebergNominal→ iceberg {LargeThing}
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18.9 Collect a similar corpus of examples for the idiommiss the boat. Analyze these
examples and come up with a set of grammar rules that correctly accounts for
them.

Some examples from the web:

• miss{the,your,. . .} boat
• miss the boat{again,in China,on aged care reform,. . .}

One set of rules that could account for these examples:

VP→ MissTheBoatVP {MissTheBoatVP.sem}

MissTheBoatVP→ MissTheBoatVP PP {PP.sem(MissTheBoatNP.sem)}

MissTheBoatVP→ miss BoatNominal {λx.∃eMissing(e) ∧
Misser(e, x) ∧
ThingMissed(e, BoatNominal.sem)}

BoatNominal→ Det boat {Det.sem(ImportantOpportunity)}



Chapter 19
Lexical Semantics

19.1 From a dictionary of your choice, collect three definitions of ordinary non-
technical English words that you feel are flawed in some way. Explain the nature
of the flaw and how it might be remedied.

There are a variety of reasonable responses to this question, but the
most obvious ones include some form of circularity, i.e., the definition
of a word uses the word itself, or refers to a word (which refers to a
word . . . ) which refers to the original word.

19.2 Give a detailed account of similarities and differences among the following set
of lexemes:imitation, synthetic, artificial, fake, andsimulated.

Some possible similarities and differences between these words:

• fake, imitationandsimulatedall imply that the object was inten-
tionally created to look or function like another object

• syntheticandartificial imply that the object was not created by
natural means, but do not necessarily imply that it was created to
mimic another object

19.3 Examine the entries for these lexemes in WordNet (or some dictionary of your
choice). How well does it reflect your analysis?

WordNet putsfake, imitation andsimulatedinto in the same synset,
indicating that they all share a sense with roughly the same meaning.
WordNet indicates thatartificial is SIMILAR -TO both syntheticand
fake/imitation/simulated, yet does not listsyntheticas SIMILAR -TO

fake/imitation/simulated.

19.4 The WordNet entry for the nounbat lists six distinct senses. Cluster these senses
by using the definitions of homonymy and polysemy given in this chapter. For
any senses that are polysemous, give an argument as to how thesenses are re-
lated.

One possible grouping of senses:

Animal bats

• bat#1: nocturnal mouselike mammal. . .

Bats in sports

• bat#5: a club used for hitting a ball in various games. . .

• bat#3: a small racket. . . for playing squash (A type of bat#5)

• bat#4: the club used in playing cricket (A type of bat#5)

• bat#2: (baseball) a turn trying to get a hit (A use of bat#5)
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19.5 Assign the various verb arguments in the following WSJ examples to their ap-
propriate thematic roles, using the set of roles shown in Fig. 19.6.

1. The intense heat buckled the highway about three feet.

2. He melted her reserve with a husky-voiced paean to her eyes.

3. But Mingo, a major Union Pacific shipping center in the 1890s, has melted
away to little more than the grain elevator now.

Part of the goal of this exercise is to understand why there isstill no
universally agreed-upon set of thematic roles: for any given set, there
are always still constituents that don’t quite match.

Given the thematic roles of Fig. 19.6, one reasonable assignment
of thematic roles is:

1. [FORCEThe intense heat] buckled [THEME the highway]
[RESULT about three feet].

2. [AGENT He] melted [THEME her reserve] [INSTRUMENT with a
husky-voiced paean to her eyes].

3. But [EXPERIENCERMingo, a major Union Pacific shipping center
in the 1890s,] has melted away [RESULT to little more than the
grain elevator] now.

19.6 Using WordNet, describe appropriate selectional restrictions on the verbsdrink,
kiss, andwrite.

drink

AGENT living thing#1: a living (or once living) entity

THEME beverage#1: any liquid suitable for drinking

kiss

AGENT animal#1: a living organism. . . [having] voluntary movement

THEME physical object#1: a tangible and visible entity. . .

write

AGENT writer#2: a person who is able to write. . .

THEME writing#2: the work of a writer. . .

19.7 Collect a small corpus of examples of the verbsdrink, kiss, andwrite, and ana-
lyze how well your selectional restrictions worked.

Some phrases from the web that break the selectional restrictions:

drink caffeine In WordNet,caffeineis a compound, not a beverage.

sun kissed In WordNet,sunis a star, not an animal.

yahoo.com wrote In WordNet,Yahoois software, not a writer.
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19.8 Consider the following examples from McCawley (1968):

My neighbor is a father of three.

?My buxom neighbor is a father of three.

What does the ill-formedness of the second example imply about how con-
stituents satisfy or violate selectional restrictions?

Selectional restrictions must apply not to individual lexical items but
to the entire constituent. In other words, we must semantically inter-
pret the entire phrase before we attempt to apply selectional restric-
tions to it.

19.9 Find some articles about business, sports, or politics fromyour daily newspaper.
Identify as many uses of conventional metaphors as you can inthese articles.
How many of the words used to express these metaphors have entries in either
WordNet or your favorite dictionary that directly reflect the metaphor.

A good set of metaphors are available from the Berkeley Conceptual
Metaphor site (http://cogsci.berkeley.edu/lakoff/ ). For
example:

Competition Is A Race e.g.,The arms race, corresponding to Word-
Net’s race#1.

Ideas Are Food e.g.,half-baked idea, corresponding to WordNet’s
half-baked#1.

Note that both WordNet metaphorical senses were marked #1, mean-
ing that they were the first and most common uses of the words – even
more common than the literal uses.

19.10 Consider the following example:

The stock exchange wouldn’t talk publicly, but a spokesman said a news
conference is set for today to introduce a new technology product.

Assuming that stock exchanges are not the kinds of things that can literally talk,
give a sensible account for this phrase in terms of a metaphoror metonymy.

The people that “wouldn’t talk publicly” here are the peoplein charge
of the company that runs the stock exchange. Thus, this appears to be
a multilayered metonomy:

HeadsOfOrganization↔ Organization↔ ProcessRunByOrganization

19.11 Choose an English verb that occurs in both FrameNet and PropBank. Compare
the FrameNet and PropBank representations of the argumentsof the verb.

SemLink (http://verbs.colorado.edu/semlink/ ) provides a
browser for viewing predicates aligned across FrameNet, PropBank
and other sources. This can be used to quickly examine the different
role sets, e.g., for the predicatesell:
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PropBank FrameNet
Arg0:Seller Seller
Arg1:Thing Sold Goods
Arg2:Buyer Buyer
Arg3:Price Paid Money / Rate [non-core roles]
Arg4:Benefactive Purpose / Reason [non-core roles]

Note that core roles Arg3 and Arg4 in PropBank correspond to sev-
eral different non-core roles in FrameNet. In particular, PropBank
introduces an Arg4:Benefactive role, even though it already has an
ARGM-PRP which more closely corresponds to the Purpose rolein
FrameNet.



Chapter 20
Computational Lexical Semantics

20.1 Collect a small corpus of example sentences of varying lengths from any news-
paper or magazine. Using WordNet or any standard dictionary, determine how
many senses there are for each of the open-class words in eachsentence. How
many distinct combinations of senses are there for each sentence? How does this
number seem to vary with sentence length?

An example from Wikipedia, with the number of WordNet sensesfor
each open-class word indicated by (N):

At 05:20:59 GMT(1) this morning(4), the Echostar(0) XI(2)
satellite(3) was successfully(1) launched(6) into a geosyn-
chronous(1) transfer(6) orbit(5) atop a Zenit-3SL(0) car-
rier(11) rocket(5).

For this sentence, there are

1 ∗ 4 ∗ 2 ∗ 3 ∗ 1 ∗ 6 ∗ 1 ∗ 6 ∗ 5 ∗ 11 ∗ 5 = 237600

possible combinations of senses. Since the number of distinct com-
binations is just the product of the number of senses for eachword,
in general we expect that the longer the sentence is, the greater the
number of possible sense combinations.

20.2 Using WordNet or a standard reference dictionary, tag each open-class word
in your corpus with its correct tag. Was choosing the correctsense always a
straightforward task? Report on any difficulties you encountered.

WordNet senses are fine-grained and often difficult to assignwith
confidence, but here is a reasonable assignment of specific senses to
the sentence from Exercise 20.1:

At 05:20:59 GMT#1 this morning#1, the Echostar XI#1
satellite#1 was successfully#1 launched#2 into a geosyn-
chronous#1 transfer#1 orbit#1 atop a Zenit-3SL carrier#2
rocket#1.

An example difficulty: is the appropriate meaning ofXI in this sce-
nario “the cardinal number that is the sum of ten and one” or isit “the
14th letter of the Greek alphabet”? The sense assignment above as-
sumes the former, but the latter could be a reasonable choiceas well.

20.3 Using the same corpus, isolate the words taking part in all the verb-subject and
verb-object relations. How often does it appear to be the case that the words
taking part in these relations could be disambiguated with only information about
the words in the relation?

Many words cannot be disambiguated using just verb-subjectand
verb-object relations. For example, consider the sentencefrom Ex-
ercise 20.1. The subject-verb relation betweensatelliteandlaunched
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is useful to distinguish between “begin with vigor” (launch#4) and
“propel with force” (launch#2), sincesatellitesgenerally don’t expe-
rience vigor. However, this relation is not so useful for distinguish-
ing between “propel with force” (launch#2) and “launch on a maiden
voyage” (launch#3), as asatellitecould undergo either of these.

20.4 Between the wordseatandfind, which would you expect to be more effective in
selectional restriction-based sense disambiguation? Why?

Generally, we expect words with stricter selectional restrictions to be
more useful because they allow fewer senses in their arguments. For
example, if we saweat a dish, we could rule out the sense dish#1 “a
container for holding or serving food”, which we could not rule out if
we sawfind a dish.

20.5 Using your favorite dictionary, simulate the original Leskword overlap disam-
biguation algorithm described on page 647 on the phraseTime flies like an arrow.
Assume that the words are to be disambiguated one at a time, from left to right,
and that the results from earlier decisions are used later inthe process.

A subset of the WordNet senses:

time#n#5 (the continuum of experience in which events pass
from the future through the present to the past)

time#v#1 (measure the time or duration of an event or action or
the person who performs an action in a certain period
of time) “he clocked the runners”

flies#n#1 (two-winged insects characterized by active flight)
flies#v#8 (pass away rapidly) “Time flies like an arrow”; “Time

fleeing beneath him”
like#v#4 (feel about or towards; consider, evaluate, or regard)

“How did you like the President’s speech last night?”
like#a#1 (resembling or similar; having the same or some of the

same characteristics; often used in combination) “suits
of like design”; “a limited circle of like minds”; “mem-
bers of the cat family have like dispositions”; “as like
as two peas in a pod”; “doglike devotion”; “a dream-
like quality”

arrow#n#1 (a mark to indicate a direction or relation)
arrow#n#2 (a projectile with a straight thin shaft and an arrowhead

on one end and stabilizing vanes on the other; intended
to be shot from a bow)

Disambiguatingtime:

• time#n#5 sharespasswith flies#v#8
• time#v#1 sharestimewith flies#v#8

There is a tie, so we should select the most frequent sense. But Word-
Net does not compare sense frequencies between nouns and verbs, so
we cannot select a sense fortime.



84 Chapter 20. Computational Lexical Semantics

Disambiguatingflies:

• flies#n#1 sharestwo with like#a#1
• flies#v#8 sharespasswith time#n#5,timewith time#v#1 andlike

with like#v#4 and like#a#1

So we select flies#v#8.

Disambiguatinglike:

• like#v#4 shareslike with flies#v#8
• like#a#1 shareslike with flies#v#8 (andtwo with flies#n#1, but

we have already decided on flies#v#8)

There is a tie, so we should select the most frequent sense. But Word-
Net does not compare sense frequencies between verbs and adjec-
tives, so we cannot select a sense forlike.

Disambiguatingarrow:

• arrow#n#1 shares nothing with any other signatures
• arrow#n#2 shares nothing with any other signatures

Since there is a tie, we select the most frequent sense, arrow#n#1.

In the end, we were only able to assign senses toflies and arrow,
with the latter simply assigned the most frequent sense. Performance
would probably have been even worse had we included all the other
possible senses of each of these words in WordNet - there simply was
not enough overlap in the sense glosses and definitions to determine
appropriate senses.

20.6 Build an implementation of your solution to the previous exercise. Using Word-
Net, implement the original Lesk word overlap disambiguation algorithm de-
scribed on page 647 on the phraseTime flies like an arrow.

import wordnet

punct_matcher = re.compile(’[%s]+’ % re.escape(string.p unctuation))
stop_words = set(line.strip() for line in open(’stop_word s.txt’))

def get_senses(stems):

# collect synsets for each stem
default_synsets = []
synset_lists = []
synset_sigs = {}
for stem in stems:

# don’t look for senses for stopwords
if stem in stop_words:

synset_lists.append([])
default_synsets.append(None)

# get synsets from WordNet, calculate signatures and
# save them, and set default synset to the first one
else:

synsets = wordnet.synsets(stem)
synset_lists.append(synsets)
default_synsets.append(synsets[0])
for synset in synsets:

# the signature is set of all words in the
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# definitions and examples, skipping stopwords
signature = set()
text_lists = synset.definitions, synset.examples
for text_list in text_lists:

for text in text_list:
text = punct_matcher.sub(’’, text)
signature.update(text.lower().split())

synset_sigs[synset] = signature - stop_words

# fill in the senses incrementally
for i, synset_list in enumerate(synset_lists):

# combine the signatures of all other synsets currently
# still being considered for the words
other_sig = set()
for other_list in synset_lists[:i] + synset_lists[i + 1:]:

for synset in other_list:
other_sig.update(synset_sigs[synset])

# for each synset of the word, count the overlapping
# words between its signature and the combined signature
overlap_counts = {}
for synset in synset_list:

overlaps = synset_sigs[synset] & other_sig
overlap_counts[synset] = len(overlaps)

# select the synset with the greatest overlap, or if no
# synsets had any overlap, use the most frequent sense
if synset_list:

max_synset = max(synset_list, key=overlap_counts.get)
if overlap_counts[max_synset] == 0:

max_synset = default_synsets[i]
synset_lists[i] = [max_synset]

# return the selected synsets (or None for stopwords)
return [synset_list[0] if synset_list else None

for synset_list in synset_lists]

20.7 Implement and experiment with a decision-list sense disambiguation system. As
a model, use the kinds of features shown in Fig. 20.2 on page 643. Use one of the
publicly available decision-list packages like WEKA (or see Russell and Norvig
(2002) for more details on implementing decision-list learning yourself). To
facilitate evaluation of your system, you should obtain oneof the freely available
sense-tagged corpora.

Data for a variety of different WSD tasks are available from the Sen-
sEval and SemEval competitions:

http://www.senseval.org/
http://nlp.cs.swarthmore.edu/semeval/

A good solution to this problem will involve not only training a model
on the data, but also inspecting the model, figuring out some of the
errors it’s making, and then introducing features accordingly. These
kinds of decision list models are unlikely to produce state-of-the-art
performance, but constructing them should at least build some in-
tuitions about what kinds of features are important for wordsense
disambiguation.



86 Chapter 20. Computational Lexical Semantics

20.8 Evaluate two or three of the similarity methods from the publicly available Word-
net Similarity package (Pedersen et al., 2004). You might dothis by hand-
labeling some word pairs with similarity scores and seeing how well the algo-
rithms approximate your hand labels.

In general, comparing the absolute values of the various similarity
metrics is probably not as useful as comparing the relative orderings.
For example, both the Resnik and Jiang & Conrath measures identify
nickelas being more related tofund than it is toscale, while the Path
Length measure identifies these pairs as being equally related:

nickel-fund nickel-scale
Path Length 0.1429 0.1429
Resnik 6.6478 6.4379
Jiang & Conrath 0.1516 0.1211

20.9 Implement a distributional word similarity algorithm thatcan take different mea-
sures of association and different measures of vector similarity. Now evalu-
ate two measures of association and two measures of vector similarity from
Fig. 20.13 on page 666. Again, you might do this by hand-labeling some word
pairs with similarity scores and seeing how well the algorithms approximate
these labels.

from __future__ import division
import collections
import math
ddict = collections.defaultdict

# a generic model for calculating word similarity, paramete rized
# by two functions: one for producing a vector from a word, and
# one for comparing two vectors
class WordSimilarityModel(object):

def __init__(self, get_vector, get_similarity):
self._get_vector = get_vector
self._get_similarity = get_similarity

def __call__(self, word1, word2):
vector1 = self._get_vector(word1)
vector2 = self._get_vector(word2)
return self._get_similarity(vector1, vector2)

# a generic model for creating feature vectors for words, bas ed
# on a list of words and the relations they were observed with
class WordVectorModel(object):

def __init__(self, word_relation_lists):
self._word_rel_counts = ddict(lambda: ddict(lambda: 0))
self._word_rel_count = 0
self._word_counts = ddict(lambda: 0)
self._rel_counts = ddict(lambda: 0)

# calculate counts of words and relations
for word, relations in word_relation_lists:

for relation in relations:
self._word_rel_counts[word][relation] += 1
self._word_rel_count += 1
self._word_counts[word] += 1
self._rel_counts[relation] += 1

# pick a canonical order for the vectors
self._rels = sorted(self._rel_counts)

# probability of the word appearing with the relation
def get_probability(self, word, rel):
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word_rel_count = self._word_rel_counts[word][rel]
word_count = self._word_counts[word]
return word_rel_count / word_count

# pointwise mutual information between word and relation ev ents
def get_mutual_information(self, word, rel):

word_given_rel_prob = self.get_probability(word, rel)
rel_prob = self._rel_counts[rel] / self._word_rel_count
try:

return math.log(word_given_rel_prob / rel_prob, 2)
except OverflowError:

return 0

# vector of relation probabilities
def get_probability_vector(self, word):

return self._get_vector(self.get_probability, word)

# vector of word-relation pointwise mutual informations
def get_mutual_information_vector(self, word):

func = self.get_mutual_information
return self._get_vector(func, word)

# helper for creating vectors
def _get_vector(self, func, word):

return [func(word, rel) for rel in self._rels]

# calculate Jaccard similarity
def get_jaccard_similarity(vector1, vector2):

top = sum(min(x1, x2) for x1, x2 in zip(vector1, vector2))
bottom = sum(max(x1, x2) for x1, x2 in zip(vector1, vector2) )
return top / bottom

# calculate Dice similarity
def get_dice_similarity(vector1, vector2):

top = 2 * sum(min(x1, x2) for x1, x2 in zip(vector1, vector2))
bottom = sum(x1 + x2 for x1, x2 in zip(vector1, vector2))
return top / bottom

Scores may then be generated like this:
>>> words = ...
>>> vector_model = WordVectorModel(get_window_relation s(5, words))
>>> get_sim = WordSimilarityModel(vector_model.get_pro bability_vector,
... get_jaccard_similarity)
>>> get_sim(’red’, ’green’)
0.046843607909485496

The following similarities, based on Wall Street Journal data, suggest
thatred is more related togreenthan it is toangry:

sim(red, green) assocprob assocPMI
simJaccard 0.047 0.017
simDice 0.089 0.034

sim(red, angry) assocprob assocPMI
simJaccard 0.033 0.011
simDice 0.063 0.021
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21.1 Early work in syntactic theory attempted to characterize rules for pronominaliza-
tion through purely syntactic means. One such early rule interprets a pronoun by
deleting it from the syntactic structure of the sentence that contains it and replac-
ing it with the syntactic representation of the antecedent noun phrase. Explain
why the following sentences (called “Bach-Peters” sentences) are problematic
for such an analysis:

(21.92) The man who deserves it gets the prize he wants.

(21.93) The pilot who shot at it hit the MIG that chased him.

What other types of reference discussed on pages 698–701 areproblematic for
this type of analysis?

For both of these sentences, the referring expression for one pronoun
is contained in the referring expression for the other pronoun. As a
result, replacing expressions with their antecedents leads to infinite
recursion, e.g.:

• [The man who deserves [it]i]j

• [The man who deserves [the prize [he]j wants]]j

• [The man who deserves [the prize [the man who deserves [the
prize [he]j wants]]j wants]]j

• etc.

Another major problem with simply replacing replacing referring ex-
pressions with their antecedents is that names and both indefinite and
definite noun phrases frequently have no antecedent in the text. For
example,the manin the sentences above has no antecedent, and there-
fore the syntactic substitution approach would be unable toassign it
a meaning.

21.2 Draw syntactic trees for Example 21.66 on page 707 and apply Hobbs’s tree-
search algorithm to it, showing each step in the search.

S1

VP

PP

at the used car dealership

NP1.2

a beautiful 1961 Ford Falcon

saw

NP1.1

John
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S2

VP

PP

NP2.3

Bob

to

NP2.2

it

showed

NP2.1

He

S3

VP

NP3.2

it

bought

NP3.1

He

Determining the referent of NP2.1 (He):
1. Start at NP2.1 (He)
2. Go up to S2 and traverse all unseen left branches
3. Determine that there are no unseen left branches along thepath
4. Move to S1 and traverse it left to right
5. Propose and accept NP1.1 (John)

Determining the referent of NP2.2 (it):
1. Start at NP2.2 (it)
2. Go up to S2 and traverse all unseen left branches
3. Determine that NP2.1 (He) does not have an NP or S node be-

tween itself and S2
4. Move to S1 and traverse it left to right
5. Propose NP1.1 (John), but reject it since gender does not match
6. Propose and accept NP1.2 (a beautiful 1961 Ford Falcon)

Determining the referent of NP3.1 (He):
1. Start at NP3.1 (He)
2. Go up to S3 and traverse all unseen left branches
3. Determine that there are no unseen left branches along thepath
4. Move to S2 and traverse it left to right
5. Propose and accept NP2.1 (He)

Thus, the Hobbs algorithm suggests that for these sentences:

He = He = John
it = a beautiful 1961 Ford Falcon

21.3 Hobbs (1977) cites the following examples from his corpus asbeing problematic
for his tree-search algorithm:

(21.94) The positions of pillars in one hall were marked by river boulders and a shaped
convex cushion of bronze that had served as theirfootings.

(21.95) They were at once assigned an important place among the scanty remains
which record the physical developments of the human race from the time of its
first appearance in Asia.
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(21.96) Sites at which the coarse grey pottery of the Shang period has been discovered
do not extend far beyond the southernmost reach of the YellowRiver, or
westward beyond itsjunction with the Wei.

(21.97) The thin, hard, black-burnished pottery, made in shapes of angular profile,
which archaeologists consider as the clearest hallmark of the Lung Shan
culture, developed in the east. The site from which ittakes its name is in
Shantung. Itis traced to the north-east as far as Liao-ning province.

(21.98) He had the duty of performing the national sacrificesto heaven and earth: his
role as source of honours and material rewards for services rendered by feudal
lords and ministers is commemorated in thousands of inscriptions made by the
recipients on bronze vessels which were eventually deposited in theirgraves.

In each case, identify the correct referent of the underlined pronoun and the one
that the algorithm will identify incorrectly. Discuss any factors that come into
play in determining the correct referent in each case, and the types of information
that might be necessary to account for them.

The full Hobbs algorithm requires a person/number check foreach
NP proposed, and rejects ones that don’t match. However, thenine
step process presented in Section 21.6 doesn’t include thischeck, so
skipping the person/number check is permissable for this exercise.
The person/number check changes only one answer, as pointedout in
the response for (21.95).

21.94 The algorithm proposesriver boulders and . . . bronze, river boul-
ders, the positionsand thenpillars (the correct response). Ex-
cluding the first two probably requires more knowledge of con-
joined noun phrases. Excludingpositionsprobably requires rec-
ognizing thatpositionsdon’t havefootings.

21.95 The algorithm proposesthe physical developmentsand thenthe
human race(the correct response). Excludingthe physical devel-
opmentscould be done using a number check, recognizing that
the singularits should not refer to the pluraldevelopments.

21.96 The algorithm proposesthe southernmost reachand thenthe Yel-
low river (the correct response). Selectingthe Yellow riverprob-
ably requires some recognition of the tendency for parallelstruc-
tures in conjoined phrases.

21.97 For the firstit, the algorithm proposesthe site, Shantung, pottery,
the east, angular profile, the clearest hallmark, and finally the
Lung Shan culture(the correct response). Everything butShan-
tung could probably be excluded by recognizing thattaking its
namerequires something with a proper name.Shantungcould
probably be excluded by recognizing that something can’t take
its name from itself.

For the secondit, the algorithm proposesthe site, Shantung
and thenit (the correct response). Excluding the first two proba-
bly involves recognizing thatculturesare traced, whilesitesand
Shantungsare not.
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21.98 The algorithm proposesbronze vessels, thousandsand thenre-
cipients(the correct response). Excluding the first two probably
involves recognizing thatbronze vesselsandthousandstypically
do not own graves.

21.4 Implement the Hobbs algorithm. Test it on a sample of the PennTreeBank. You
will need to modify the algorithm to deal with differences between the Hobbs
and TreeBank grammars.

This is a challenging tree-walking problem. Some areas where extra
care is needed:
• In the Treebank, S can be expressed as S, SBAR, SINV, etc.
• In the Treebank, there is no Nominal node, only NP nodes.
• All node searches need to be breadth first, not depth first.
• Left branches are searched left to right, even though when walk-

ing up the tree they are encountered from right to left.
The algorithm itself just proposes NP nodes, with the expectation that
some nodes will be ruled out by gender, number, etc. To actually eval-
uate the algorithm on the TreeBank, some heuristics will be necessary
to rule out obviously wrong candidates.

21.5 Consider the following passage, from Brennan et al. (1987):

(21.99) Brennan drives an Alfa Romeo.
She drives too fast.
Friedman races her on weekends.
She goes to Laguna Seca.

Identify the referent that the BFP algorithm finds for the pronoun in the final
sentence. Do you agree with this choice, or do you find the example ambiguous?
Discuss why introducing a new noun phrase in subject position with a pronom-
inalized reference in object position might lead to an ambiguity for a subject
pronoun in the next sentence. What preferences are competing here?

For the sentenceBrennan drives an Alfa Romeo(U1), there are no
pronouns, so we simply have:

Cf (U1): {Brennan, Alfa Romeo}
Cp(U1): Brennan
Cb(U1): undefined

The sentenceShe drives too fast(U2) has the pronounShe, so we
have the two choices below. Since Continue is preferred to Retain,
we choose the first whereShe= Brennan:

Cf (U2): {Brennan}
Cp(U2): Brennan
Cb(U2): Brennan
Continue:Cb(U2) = Cp(U2) andCb(U1) is undefined
Cf (U2): {Alfa Romeo}
Cp(U2): Alfa Romeo
Cb(U2): Brennan
Retain:Cb(U2) 6= Cp(U2) andCb(U1) is undefined
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The sentenceFriedman races her on weekends(U3) has the pronoun
her, but sinceCf (U2) = {Brennan}, we must haveher= Brennan:

Cf (U3): {Friedman, Brennan}
Cp(U3): Friedman
Cb(U3): Brennan
Retain:Cb(U3) 6= Cp(U3) andCb(U3) = Cb(U2)

The sentenceShe goes to Laguna Seca.(U4) has the pronounShe,
so we have the two choices below. Since Continue is preferredto
Smooth-Shift, we choose the first whereShe= Brennan:

Cf (U4): {Brennan, Laguna Seca}
Cp(U4): Brennan
Cb(U4): Brennan
Continue:Cb(U4) = Cp(U4) andCb(U4) = Cb(U3)

Cf (U4): {Friedman, Laguna Seca}
Cp(U4): Friedman
Cb(U4): Friedman
Smooth-Shift:Cb(U4) = Cp(U4) andCb(U4) 6= Cb(U3)

However, for many speakers, the finalShecan refer toFriedman. In
situations like this, there seems to be some competition between the
subject bias (i.e., the grammatical role hierarchy, which prefers to
refer back to the subject,Friedman), and Centering’s Continue bias
(which prefers to keep refering to the same person,Brennan).

21.6 Consider passages (21.100a-b), adapted from Winograd (1972).

(21.100) The city council denied the demonstrators a permitbecause

a. they feared violence.
b. they advocated violence.

What are the correct interpretations for the pronouns in each case? Sketch an
analysis of each in the interpretation as abduction framework, in which these
reference assignments are made as a by-product of establishing the Explanation
relation.

The correct interpretations are:

a. they= city council
b. they= demonstrators

In order to reason about the reference assignments, we first estab-
lish some basic rules corresponding to coherence relationsand world
knowledge about permit denials:

(A) ∀e, f explanation(e, f) ⇒ coherence-rel(e, f)
(B) ∀e, f cause(f, e) ⇒ explanation(e, f)
(C) ∀f, a, e, d, w, x, y, z

fear(f, w, y) ∧ advocate(a, x, y) ∧ enables(e, z, x, y)
⇒ deny(d, w, x, z) ∧ (cause(f, d) ∨ cause(a, d))

Concluding thatthey= city councilthen looks like:
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(1) deny(d, Council, Demonstrators, Permit) Given
(2) fear(f, they, Violence) Given
(3) coherence-rel(d, f) Assumed
(4) explanation(d, f) Abduction: A, 3
(5) cause(f, d) Abduction: B, 4
(6) fear(f, Council, y) Abduction: C, 1, 5
(7) fear(f, they= Council, y = Violence) Substitution: 2, 6

The derivation forthey= demonstratorsworks in a similar manner.

21.7 Select an editorial column from your favorite newspaper, and determine the
discourse structure for a 10–20 sentence portion. What problems did you en-
counter? Were you helped by superficial cues the speaker included (e.g., dis-
course connectives) in any places?

Assigning discourse structure is difficult and no two solutions to this
problem are likely to be the same, even if they started with the same
text. Discourse connectives typically appear infrequently, and they
are often vague as to which relation they express.

One approach that might make assigning the relations easieris to
follow the Penn Discourse TreeBank (Miltsakaki et al., 2004) guide-
lines and use discourse connectives themselves as the relation labels
instead of abstract relations like Elaboration or Background. For ex-
ample, abecauserelation would be assigned to the two sentences
below sincebecausereads well when inserted between them:

Some have raised their cash positions to record levels.
[Because] High cash positions help buffer a fund when the
market falls.
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22.1 Develop a set of regular expressions to recognize the character shape features
described in Fig. 22.7.

import re

pattern_labels = {
r’ˆ[a-z]+$’: ’Lower’,
r’ˆ[A-Z][a-z]+$’: ’Capitalized’,
r’ˆ[A-Z]+$’: ’All caps’,
r’ˆ[A-z] * [a-z]+[A-Z]+[a-z]+[A-z] * ’: ’Mixed caps’,
r’ˆ[A-z] * [A-Z]+[a-z]+[A-Z]+[A-z] * ’: ’Mixed caps’,
r’ˆ[A-Z]\.$’: ’Caps char with period’,
r’ˆ. * \d$’: ’Ends in digit’,
r’ˆ. * -. * $’: ’Contains hyphen’

}

def shape(word):
for pattern, label in pattern_labels.items():

if re.match(pattern, word):
return label

22.2 Using a statistical sequence modeling toolkit of your choosing, develop and eval-
uate an NER system.

Good solutions to this problem should implement at least thefirst five
features in Fig. 22.6, and include some sort of window of features for
each word classified. For evaluating systems, data for Spanish and
Dutch from the CoNLL 2002 competitions are freely availablehere:

http://www.cnts.ua.ac.be/conll2002/ner/

Of course, a variety of other named entity data sets could also be used.

22.3 The IOB labeling scheme given in this chapter isn’t the only possible one. For
example, anE tag might be added to mark the end of entities, or theB tag can
be reserved only for those situations where an ambiguity exists between adjacent
entities. Propose a new set ofIOB tags for use with your NER system. Exper-
iment with it and compare its performance with the scheme presented in this
chapter.

Some schemes that have been compared in the literature:

IOB1 B tags are only used between adjacent chunks
IOB2 B tags are used at the starts of all chunks
IOE1 E tags are only used between adjacent chunks
IOE2 E tags are used at the ends of all chunks
IOBES both starts and ends are marked, and single word

chunks get the tagS

Tjong Kim Sang and Veenstra (1999) found thatIOB1 performed best,
while Kudo and Matsumoto (2001) found thatIOB2 performed best.
In both cases however, the performance differences were quite small.

94
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22.4 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a list of
names of works of art from a particular category from a Web-based source (e.g.,
gutenberg.org, amazon.com, imdb.com, etc.). Analyze yourlist and give exam-
ples of ways that the names in it are likely to be problematic for the techniques
described in this chapter.

Titles of works of art look much more like regular language than the
people, organizations, etc. discussed earlier. For example:

• The Color Purple
• To Kill a Mockingbird
• The Grapes of Wrath
• Of Mice and Men
• The Call of the Wild

In particular, titles include many more determiners and prepositional
phrases, and often consist of common nouns instead of propernouns.

22.5 Develop an NER system specific to the category of names that you collected in
the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.

Good solutions to this problem will likely need to introducesome
new features that better characterize how these names appear in texts.
It may also be necessary to increase the classifier window size since
names of works of art are likely to be longer than names of people,
locations, etc.

22.6 Acronym expansion, the process of associating a phrase withan acronym, can
be accomplished by a simple form of relational analysis. Develop a system
based on the relation analysis approaches described in thischapter to popu-
late a database of acronym expansions. If you focus on English Three Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing it
to Wikipedia’s TLA page.

A baseline approach to finding acronyms is to look for patterns like:

Xxxxx Yyy Zzzzzz (XYZ)

These kinds of patterns can be matched with regular expressions like:

([A-Z]). * ([A-Z])\w * \(\1[A-Z] * \2\)

The expression above would match phrases like:

• Alternative Minimum Tax (AMT)
• International Foundation for Art Research (IFAR)
• LONDON INTERBANK OFFERED RATES (LIBOR)

However it would miss phrases like:

• diethylstilbestrol (DES)
• “world dollar base” (WDB)
• Bell Mueller Cannon Inc. (BMC)
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A more thorough solution to this problem would involve taking seed
acronyms like the ones found above, and using them in a bootstrap-
ping approach to find additional acronym patterns.

Note that if Wikipedia’s TLA page is used for evaluation, it will
be necessary make sure that the TLA page is never used during the
bootstrapping process, or the evaluation will be invalid.

22.7 A useful functionality in newer email and calendar applications is the ability to
associate temporal expressions connected with events in email (doctor’s appoint-
ments, meeting planning, party invitations, etc.) with specific calendar entries.
Collect a corpus of email containing temporal expressions related to event plan-
ning. How do these expressions compare to the kinds of expressions commonly
found in news text that we’ve been discussing in this chapter?

Some example temporal expressions from event planning emails:

• Sunday
• June 23
• Fri, Jul 25th - 8pm
• coming Wednesday at 6:30 pm

Generally, the expressions look quite similar to the expressions found
in news text, though informal expressions likecoming Wednesday
are more frequent. In this sense, temporal expression recognition is
a more constrained task than named entity recognition because the
forms do not change as dramatically across different genresof text.

22.8 Develop and evaluate a recognition system capable of recognizing temporal ex-
pressions of the kind appearing in your email corpus.

A good baseline to compare the system against is the TempEx tagger,
a rule based system created by MITRE for newswire data:

http://timex2.mitre.org/taggers/timex2_taggers.html

Performing better than TempEx will likely require a machinelearn-
ing approach and/or identifying some types of temporal expressions
common in email data that are missed by TempEx.

22.9 Design a system capable of normalizing these expressions tothe degree required
to insert them into a standard calendaring application.

The bulk of the work for this solution is in creating rules that map
natural language words into numeric temporal representations. Even
for fully qualified absolute times, this is a complex task as there are
many ways of expressing the same time, e.g.

• January 25th, 2007 at 2:00pm
• at 14:00 on Jan 25 2007
• 2007-01-25 14:00:00

For times that are not fully specified, some temporal arithmetic will
be necessary, though in most cases, it should be possible to assume
that events will be scheduled later than their email’s date.
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22.10 Acquire the CMU seminar announcement corpus and develop a template-filling
system by using any of the techniques mentioned in Section 22.4. Analyze how
well your system performs as compared with state-of-the-art results on this cor-
pus.

A good summary of state of the art results is available in (Peshkin and
Pfefer, 2003). The features used by the best models are pretty much
the same as the features presented in Fig. 22.6, so one reasonable
approach to this problem is simply to retrain the system developed in
Exercise 22.2 using the new label set.

22.11 Given your corpus, develop an approach to annotating the relevant slots in your
corpus so that it can serve as a training corpus. Your approach should involve
some hand-annotation but should not be based solely on it.

The goal of this problem was to investigate the constructionof a cor-
pus useful for template-filling tasks. The intent was that students
would come up with an idea for a template, find documents likely
to instantiate that template, and then annotate each document for the
slot-fillers of that template.

One approach to reduce the amount of hand-annotation would be
to build a simple rule based template-filling system first, run that on
the data, and then hand correct all of the outputs. For this approach to
work, a system with a relatively high precision (probably atthe cost
of recall) is usually necessary.

22.12 Retrain your system and analyze how well it functions on yournew domain.

The intent of this problem was for students to retrain their template-
filling models created in Exercise 22.10 on the new data created in
Exercise 22.11.

Since only a small amount of data is likely to be produced in Ex-
ercise 22.11, performance on this data is likely to be much lower than
performance on the CMU seminar announcement corpus unless the
new template selected was particularly easy. If there are any slots
in common with the CMU seminar announcement corpus, it may be
possible to gain some performance by combining the two data sets
and training on both.

22.13 Species identification is a critical issue for biomedical information extraction
applications such as document routing and classification. But it is especially
crucial for realistic versions of the gene normalization problem.
Build a species identification system that works on the document level, using the
machine learning or rule-based method of your choice. Use the BioCreative gene
normalization data (biocreative.sourceforge.net ) as gold-standard
data.

The goal of species identification is, given a passage of biomedical
text about an organism, to identify the species of the organism being
described. The best beginning to a successful solution to this problem
is to start with a document set in which documents are likely to have
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only a single species mentioned. This is often not the case – one study
found that over 70% of documents in the set mentioned more than one
species. This is more of a problem with full-text journal articles than
it is with abstracts. The BioCreative data is a good startingpoint
because it is all abstracts and it tends to have single-species abstracts.
It is also artificially easy in that the number of species mentioned
is only four (if you combine the BioCreative I and BioCreative II
collections) – realistic text collections may mention tensof species.

For the BioCreative data sets, rule-based and machine-learning-
based systems should both work well; a simple Bayesian classifier is
likely to suffice, as would a simple rule-based method that counted
mentions of species names and assigned the most-mentioned species
to the document.

Note that document-level classification is an unrealistically easy
task, although it is a good one for students who would benefit from
building a simple classifier with a BOW feature set. The real task is
to do classification at the level of the individual entity mention within
the document.mouseor yeast.

22.14 Build, or borrow, a named entity recognition system that targets mentions of
genes and gene products in texts. As development data, use the BioCreative
gene mention corpus (biocreative.sourceforge.net ).

There are a number of publicly available systems. The ABNER sys-
tem (http://pages.cs.wisc.edu/ ˜ bsettles/abner/ ), is one
the most nicely engineered and probably the easiest to use atthis time.
To build an NER system, the easiest approach to take with the BioCre-
ative corpus is to treat it as a POS tagging problem with a GENEtag,
since that is how the data is represented – all tokens are POS-tagged,
except for tokens which are part of gene names – they are tagged
GENE. Most imaginable machine-learning-based methods have been
tried; see the proceedings of either of the two BioCreative meetings
for lots of suggestions on feature sets. Note that dictionary-based
methods tend to perform quite poorly.

22.15 Build a gene normalization system that maps the output of your gene mention
recognition system to the appropriate database entry. Use the BioCreative gene
normalization data as your development and test data. Be sure you don’t give
your system access to the species identification in the metadata.

While gene normalization can be thought of as a word sense disam-
biguation (WSD) task, it differs from traditional WSD tasksin that
there are often many different realizations of each gene, e.g., soma-
totropin and growth hormoneboth refer to the same biomolecule.
Thus, unlike traditional WSD tasks, where the possible senses to be
assigned can simply be looked up in a dictionary, in gene normaliza-
tion, a large part of the task is finding which entries in the dictionary
might be relevant.
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Gene normalization is mostly an unsolved problem, and a student
who does well on it is likely to have a publishable paper on their
hands. For one very recent system that has tackled this problem on
the BioCreative data, see Wang and Matthews (2008). Their work
got the best results from a hybrid system that did an initial pass with
a machine-learning-based system and then used a rule-basedsystem
for post-processing.



Chapter 23
Question Answering

and Summarization
23.1 Pose the following queries to your favorite Web search engine.

Who did the Vice President kill?
Who killed the former Treasury Secretary?

Do an error-analysis on the returned snippets and pages. What are the sources of
the errors? How might these errors be addressed by a more intelligent question-
answering system?

In recent results from Google, the best hit forWho did the Vice Pres-
ident kill is the second one, which contains a paragraph about Vice
President Aaron Burr shooting the former Secretary of the Treasury
Alexander Hamilton. This is a reasonable response, but it misses the
fact thatthe Vice Presidentprobably refers to the current one. Giving
a better answer would likely require a better understandingof deter-
miners likethe.

The best hits forWho killed the former Treasury Secretaryare
probably the third and fourth, which refer to an internet conspiracy
theory that Treasury Secretary Henry Paulson was shot and killed by
assassins of Putin. This is bad because at the time of the query, Henry
Paulson was the current Treasury Secretary (and still alive!) not the
former Treasury Secretary. Giving a better answer would likely re-
quire a better understanding of temporal terms likeformer (and per-
haps a better recognition of dubious conspiracy theories).

For both questions, many of the remaining hits seem to be miscel-
laneous combinations of the words in the query, e.g., some Treasury
Secretary and someone else being killed, but no particular relation be-
tween the two. Getting better responses here would require acknowl-
edging the predicate-argument structure of the question and trying to
better match that in the response, probably using one of the semantic
role labeling techniques introduced in Chapter 20.

23.2 Do some error analysis on Web-based question answering. Choose 10 questions
and type them all into two different search engines. Analyzethe errors. For
example, what kinds of questions could neither system answer? Which kinds of
questions did one work better on? Was there a type of questionthat could be
answered just from the snippets?

The goal of this problem is to get a sense of the limitations ofsearch
engines, as well as the differences between different search engine
implementations. Since most search engines are based in slight vari-
ants of the same vector space models, while the individual hits are
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likely to be different, the basic kinds of errors are likely to be simi-
lar. For example, the problems with predicate-argument structure we
saw in the preceding exercise are likely to be problems for all cur-
rent search engines, though the exact hits returned are likely to be
different.

23.3 Read Brill et al. (2002). Implement a simple version of the AskMSR system.

The basic approach of the AskMSR system is to convert questions
into declarative phrases, use phrasal searches to find thosephrases on
the web, and then search for n-grams that occur near the phrases in
the hits returned. An implementation of AskMSR would probably
include the following steps:

1. Rewrite the query in a declarative form, e.g.,When was the paper
clip invented?is rewritten asThe paper clip was invented.

2. Using a phrasal search engine, find hits containing the rewritten
query phrase.

3. Using only the summaries returned by the search engine, extract
unigrams, bigrams and trigrams around the matched phrase.

4. Find the unigrams, bigrams and trigrams that appeared in the
largest number of summaries.

5. Analyze the query’s expected answer type and filter n-grams that
would be inappropriate.

6. Assemble the longest possible answer by starting with thebest
scoring n-gram and tiling other n-grams onto it, e.g., combining
A B CandB C Dinto A B C D.

The full version of AskMSR includes a little more detail (e.g., pro-
ducing several query rewrites with different scores), but the above
steps capture the core ideas of the approach.

23.4 Apply the system you developed for the last question to a small, closed, set of
Web pages of interest. For example, you could use the set of pages that describe
the undergraduate degree and course requirements at a university. How does the
restriction to a small collection affect the performance ofthe system?

Systems like the AskMSR system rely on the massive redundancy of
corpora like the web

• to be able to find full phrasal matches, since only with a large
number of documents can we expect the exact query phrase to
occur, and
• to be able to score and tile the n-grams, since we need a large

number of responses to calculate meaningful n-gram frequen-
cies.

As a result, using a system like the AskMSR system on a small corpus
is likely to see a substantial drop in performance.



Chapter 24
Dialogue and ConversationalAgents

24.1 List the dialogue act misinterpretations in theWho’s on Firstroutine at the be-
ginning of the chapter.

C: I want you to tell me the names of the fellows on the St Louis
team.

A: I’m telling you. Who’s on first, What’s on second, I Don’t Know
is on third.
Intended: STATEMENT

Understood: QUESTION

C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?

Intended: QUESTION

Understood: CHECK

A: Yes.
C: I mean the fellow’s name on first.
A: Who.

Intended: STATEMENT

Understood: QUESTION

C: The guy on first base.
A: Who is on first.

Intended: STATEMENT

Understood: QUESTION

C: Well what are you askin’ me for?
A: I’m not asking you – I’m telling you. Who is on first.

24.2 Write a finite-state automaton for a dialogue manager for checking your bank
balance and withdrawing money at an automated teller machine.

One possible solution:
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24.3 Dispreferred responses (e.g., turning down a request) are usually signaled by
surface cues such as significant silence. Try to notice the next time you or some-
one else utters a dispreferred response, and write down the utterance. What are
some other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

The question is ambiguous, but the intent was to ask for both verbal
and non-verbal cues. Verbal cues include pauses, fillers likewell, dis-
fluencies or self-repair, apologies or qualifications, etc.Non-verbal
cues include a lowered gaze, changes in facial expression like frown-
ing (or even smiling), gestures like a raised hand, etc.

24.4 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred re-
sponses. Try to notice some unsure answers to questions. What are some of the
cues? If you have trouble doing this, read Smith and Clark (1993) and listen
specifically for the cues they mention.

Some cues for unsure answers identified by Smith and Clark (1993):
• Long pauses
• Rising intonation
• Hedges likeI guessor I think
• Fillers like uh, um, tongue clicks, whistling or sighing

24.5 Build a VoiceXML dialogue system for giving the current timearound the world.
The system should ask the user for a city and a time format (24 hour, etc) and
should return the current time, properly dealing with time zones.

Initial VoiceXML prompts for the user might look like:
<?xml version="1.0" ?>
<vxml version="2.0">

<form>
<field name="city">

<prompt>
What city would you like the time for?

</prompt>
<grammar type="application/x-nuance-gsl">

[denver (san francisco) ...]
</grammar>

</field>
<field name="format">

<prompt>
Twelve hour or twenty four hour clock?

</prompt>
<grammar type="application/x-nuance-gsl">

[[twelve (twenty four)] ?hour]
</grammar>

</field>
</form>
<block>

<submit next="http://example.com/get-time"/>
</block>

</vxml>

This script would submit the fieldscity andformat to the server
at http://example.com/get-time . The server would need
to look up the the current time for the city, and return VoiceXML like
the following, withCity andTime filled in with appropriate values:
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<?xml version="1.0" ?>
<vxml version="2.0">

<block>
<prompt>

The time in [City] is [Time]
</prompt>

</block>
</vxml>

24.6 Implement a small air-travel help system based on text input. Your system should
get constraints from users about a particular flight that they want to take, ex-
pressed in natural language, and display possible flights ona screen. Make sim-
plifying assumptions. You may build in a simple flight database or you may use
a flight information system on the Web as your backend.

This is a challenging problem that requires at least:
• A parser component that extracts slots likeORIGIN andDESTI-

NATION from natural language text.
• A dialog management component that prompts the user for addi-

tional information when necessary.
• A database component that translates the requested slots into ap-

propriate database queries.
• A generation component that presents the flights retrieved from

the database to the user.
One of the key goals of this exercise is to help develop a better under-
standing of how each of these components interact with each other,
and what the most important points of integration are.

24.7 Augment your previous system to work with speech input through VoiceXML.
(Or alternatively, describe the user interface changes youwould have to make for
it to work via speech over the phone.) What were the major differences?

Some of the biggest changes for a phone-based interface would be in
the generation component. When visualizing flight information on a
screen, tables can be used to display a lot of information simultane-
ously. Over the phone, the same information must be given, but listing
everything would overwhelm most users. Thus, the output generation
will need better integration with the dialog management to allow the
user to verbally browse the flights by date, time of day, airport, etc.

Of course, other areas of the system will also need adaptation,
e.g., errors in speech recognition make the information extraction
more difficult, as a result requiring greater interaction with the user to
verify words when uncertain.

24.8 Design a simple dialogue system for checking your email overthe telephone.
Implement in VoiceXML.

This exercise shares many of the challenges of Exercise 24.6, though
the grammar the parser must understand may be somewhat simpler,
and much of the generation will simply be reading text. Good solu-
tions to this problem will allow actions like checking for new mes-
sages, reading a message aloud, advancing to the next message, etc.
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24.9 Test your email-reading system on some potential users. Choose some of the
metrics described in Section 24.4.2 and evaluate your system.

Most of the evaluation metrics require that the users attempt some
sort of task. Good tasks to evaluate the email-reading system include
reading the most recent email, scanning for an email with a particular
title, etc. To get a good feel for how effective each of the types of
metrics are, it would be best to use at least one metric each from the
task completion metrics, the efficiency cost metrics and thequality
cost metrics.



Chapter 25
Machine Translation

25.1 Select at random a paragraph of Chapter 12 that describes a fact about English
syntax. a) Describe and illustrate how your favorite foreign language differs in
this respect. b) Explain how an MT system could deal with thisdifference.

For example, the rule:

NP→ (Det)(Card)(Ord)(Quant)(AP)Nominal

is wrong since in Spanish adjectives usually follow nouns, e.g.:

la manzana roja
THE APPLE RED

Det Noun Adj

Particularly when the word is a simple adjective (and not a long ad-
jectival phrase), an MT system could address this difference with a
simple reordering strategy that put adjectives after nouns.

25.2 Choose a foreign language novel in a language you know. Copy down the short-
est sentence on the first page. Now look up the rendition of that sentence in an
English translation of the novel. a) For both original and translation, draw parse
trees. b) For both original and translation, draw dependency structures. c) Draw
a case structure representation of the meaning that the original and translation
share. d) What does this exercise suggest to you regarding intermediate repre-
sentations for MT?

From Don Quixote (fromgutenberg.org ):

a) Syntactic trees
S

VP

NP

his wits

lost

NP

the poor gentleman

PP

NP

conceits of this sort

Over

S

VP

NP

el juicio

NP

el pobre caballero

perdı́a

PP

NP

estas razones

Con
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b) Dependency trees
lost

wits

his

gentleman

poorthe

over

conceits

of this sort

perdı́a

juicio

el

caballero

pobreel

con

razones

estas

c) Case structures
lost

THEME

his wits

EXPERIENCER

the poor gentleman

REASON

over conceits of this sort
perdı́a

THEME

el juicio

EXPERIENCER

el pobre caballero

REASON

Con estas razones

d) Translating between dependency trees or case role representations
looks relatively straightforward, while translating between syntactic
parses would require some additional work since the subjectnoun
phrase is before the verb in English but after the verb in Spanish.
Of course, this same problem would arise for the dependency tree
or case role representations when converting the words in the tree to
their final ordered output.

25.3 Version 1 (for native English speakers): Consider the following sentence:

These lies are like their father that begets them; gross as a mountain, open,
palpable. Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern vernacular English, such as
the style of aNew York Timeseditorial, anEconomistopinion piece, or your
favorite television talk-show host.

Version 2 (for native speakers of other languages): Translate the following sen-
tence into your native language.

One night my friend Tom, who had just moved into a new apartment, saw
a cockroach scurrying about in the kitchen.

For either version, now:

a) Describe how you did the translation: What steps did you perform? In what
order did you do them? Which steps took the most time?

One possible approach would be to perform a multi-staged trans-
lation. First, do a simple word-by-word translation. (Notethat in
the process, we lose the pun ongross, which could mean bothfat
andobvious.)

These lies are like the man who gave birth to them: obvious
as a mountain, open, blatant.
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Next remove the somewhat stilted metaphor:

These lies are like the man speaking them: obvious as a
mountain, open, blatant.

Then condense some redundancies:

These lies are like the man speaking them: blatant and obvi-
ous.

Finally, reorder phrases to use the more commonas X as con-
struction:

These lies are as blatant and obvious as the man speaking
them.

The major time sink of this approach is not in any given step,
but in deciding which steps to apply and in what order, that is, in
planning the translation strategy.

b) Could you write a program that would translate by the same methods that
you did? Why or why not?

Some of these steps would be quite difficult to do automatically.
For example, automatically detecting metaphors is an unsolved
problem, and having to translate them into non-metaphoric speech
would make the problem even more difficult.

c) What aspects were hardest for you? Would they be hard for anMT system?

One of the difficulties was in recognizing that theas X as con-
struction was a more natural way of expressing the sentence.This
would likely be difficult for an MT system was well, since this
construction is not all that frequent, and the translation requires
some substatial phrase movements.

d) What aspects would be hardest for an MT system? Are they hard for people
too?

Removing the metaphor would be extremely hard for an MT sys-
tem to do unless thegave birth/speakingmetaphor is for some
reason very common in the training corpus.

e) Which models are best for describing various aspects of your process (di-
rect, transfer, interlingua, or statistical)?

The approach given here is a combination of a couple different
models: the word-by-word translation was like a direct model,
while the phrase reorderings were more like a transfer model.

f) Now compare your translation with those produced by friends or class-
mates. What is different? Why were the translations different?

Translations by others are likely to be fairly different, particularly
if the others aimed for a different genre to translate to. Investigat-
ing the differences should give some idea of where in the process
alternate decisions could have been made, and how such decisions
would have influenced the final result.
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25.4 Type a sentence into any MT system and see what it outputs. a) List the problems
with the translation. b) Rank these problems in order of severity. c) For the two
most severe problems, suggest the probable root cause.

Using Google Translate in 2008:

Input Mary did not slap the green witch.
Output Marı́a no bofetada la bruja verde.
Expected Marı́a no dı́o una bofetada a la bruja verde.

There are three words missing in the Spanish translation:dı́o, una
anda. Probably the most significant one isdı́o - in Spanish, you must
give a slap, you cannot useslap as a verb. Note that withoutdı́o,
there is no verb in the sentence, so this is a pretty serious error. The
other major error is the missinga, which indicates that the slap is
being givento the witch. This error is related to the missingdı́o as
well - una bofetadashould be the only object ofdı́o, but sincedı́o
was missing, there was no way to guess that. In both cases, themost
likely root cause is the fact that none of the missing words align to
any of the English words.

25.5 Build a very simple, direct MT system for translating from some language you
know at least somewhat into English (or into a language in which you are rel-
atively fluent), as follows. a) First, find some good test sentences in the source
language. Reserve half of these as a development test set, and half as an unseen
test set. Next, acquire a bilingual dictionary for these twolanguages (for many
languages, limited dictionaries can be found on the Web thatwill be sufficient
for this exercise). Your program should translate each wordby looking up its
translation in your dictionary. You may need to implement some stemming or
simple morphological analysis. b) Next, examine your output, and do a prelim-
inary error analysis on the development test set. What are the major sources of
error? c) Write some general rules for correcting the translation mistakes. You
will probably want to run a part-of-speech tagger on the English output, if you
have one. d) Then see how well your system runs on the test set.

There are likely to be two major sources of errors in these simple
dictionary based MT systems: selecting the wrong words, andfailing
to change the word order. Correcting the word selection problems
will likely require WSD-like methods, e.g., looking for keywords in
the surrounding context. Correcting the word order problems will
likely require reordering rules that move words or phrases around,
e.g., moving adjectives after the nouns instead of before them.



110 Chapter 25. Machine Translation

25.6 Continue the calculations for the EM example on page 887, performing the sec-
ond and third round of E-steps and M-steps.

E-step 2a RecomputeP (a, f |e) by multiplying t probabilities:
green house

casa verde

P (a, f |e)
= t(casa, green)×

t(verde, house)
= 1

2
× 1

4
= 1

8

green house

casa verde

P (a, f |e)
= t(verde, green)×

t(casa, house)
= 1

2
× 1

2
= 1

4

the house

la casa

P (a, f |e)
= t(la, the)×

t(casa, house)
= 1

2
× 1

2
= 1

4

the house

la casa

P (a, f |e)
= t(casa, the)×

t(la, house)
= 1

2
× 1

4
= 1

8

E-step 2b NormalizeP (a, f |e) to getP (a|e, f):
green house

casa verde

P (a|f, e)

=
1/8

3/8
= 1

3

green house

casa verde

P (a|f, e)

=
1/4

3/8
= 2

3

the house

la casa

P (a|f, e)

= 1/4

3/8
= 2

3

the house

la casa

P (a|f, e)

= 1/8

3/8
= 1

3

E-step 2c Compute expected counts by weighting each count byP (a|e, f):
tcnt(casa|green) = 1

3
tcnt(verde|green) = 2

3
tcnt(la|green) = 0 total(green) = 1

tcnt(casa|house) = 2

3
+ 2

3
tcnt(verde|house) = 1

3
tcnt(la|house) = 1

3
total(house) = 2

tcnt(casa|the) = 1

3
tcnt(verde|the) = 0 tcnt(la|the) = 2

3
total(the) = 1

M-step 2 Compute MLE probability parameters by normalizing the tcounts:
t(casa|green) = 1/3

1
= 1

3
t(verde|green) = 2/3

1
= 2

3
t(la|green) = 0

1
= 0

t(casa|house) = 4/3

2
= 2

3
t(verde|house) = 1/3

2
= 1

6
t(la|house) = 1/3

2
= 1

6

t(casa|the) = 1/3

1
= 1

3
t(verde|the) = 0

1
= 0 t(la|the) = 2/3

1
= 2

3

E-step 3a RecomputeP (a, f |e) by multiplying t probabilities:
green house

casa verde

P (a, f |e)
= t(casa, green)×

t(verde, house)
= 1

3
× 1

6
= 1

18

green house

casa verde

P (a, f |e)
= t(verde, green)×

t(casa, house)
= 2

3
× 2

3
= 4

9

the house

la casa

P (a, f |e)
= t(la, the)×

t(casa, house)
= 2

3
× 2

3
= 4

9

the house

la casa

P (a, f |e)
= t(casa, the)×

t(la, house)
= 1

3
× 1

6
= 1

18

E-step 3b NormalizeP (a, f |e) to getP (a|e, f):
green house

casa verde

P (a|f, e)

=
1/18

1/2
= 1

9

green house

casa verde

P (a|f, e)

=
4/9

1/2
= 8

9

the house

la casa

P (a|f, e)

= 4/9

1/2
= 8

9

the house

la casa

P (a|f, e)

= 1/18

1/2
= 1

9
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E-step 3c Compute expected counts by weighting each count byP (a|e, f):
tcnt(casa|green) = 1

9
tcnt(verde|green) = 8

9
tcnt(la|green) = 0 total(green) = 1

tcnt(casa|house) = 8

9
+ 8

9
tcnt(verde|house) = 1

9
tcnt(la|house) = 1

9
total(house) = 2

tcnt(casa|the) = 1

9
tcnt(verde|the) = 0 tcnt(la|the) = 8

9
total(the) = 1

M-step 3 Compute MLE probability parameters by normalizing the tcounts:
t(casa|green) = 1/9

1
= 1

9
t(verde|green) = 8/9

1
= 8

9
t(la|green) = 0

1
= 0

t(casa|house) = 16/9

2
= 8

9
t(verde|house) = 1/9

2
= 1

18
t(la|house) = 1/9

2
= 1

18

t(casa|the) = 1/9

1
= 1

9
t(verde|the) = 0

1
= 0 t(la|the) = 8/9

1
= 8

9

25.7 (Derived from Knight (1999b)) How many possible Model 3 alignments are there
between a 20-word English sentence and a 20-word Spanish sentence, allowing
for NULL and fertilities?

Just like in Model 1, every Spanish word is aligned NULL or a single
English word. Since the word fertilitiesφi are constrained to be a non-
negative numbers, and we have 20 Spanish words to generate from
our English words, we have0 ≤ φi ≤ 20. And since we can generate
zero or one spurious Spanish words for each of our 20 English words,
we have0 ≤ φ0 ≤ 20.

So just as with Model 1, we calculate the total possible alignments
by choosing for each of our 20 Spanish words one of the 20 English
words or NULL. Thus the total possible alignments is:

2120 = 278, 218, 429, 446, 951, 548, 637, 196, 401

Note however, that if we could guarantee that ourφi values were
smaller than 20, we could have a smaller total number of possible
alignments.
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