
Database Normalization 1

Database Normalization
The normalization process aims to minimize data duplications, avoid errors during data modifications, and simplify data queries 
from the database. The three fundamental normalization forms are known as:

First Normal Form (1NF)

Second Normal Form (2NF)

Third Normal Form (3NF)

The following example includes fictitious data required by a Medical Group Surgery based in London to generate relevant 
reports. Doctors work in multiple regions and various councils in London. And once patients book an appointment, they are 
given a slot ID at their local surgery. There might be multiple surgeries in the same council but with different postcodes, 
where one or more councils belong to a particular region. For example, East or West London.

Doctor ID Doctor name Region Patient ID Patient name
Surgery
Number

Surgery
council

Postcode

D1 Karl West London
P1   
P2   
P3

Rami   
Kim   
Nora

3 Harrow HA9SDE

D1 Karl East London
P4  
P5

Kamel  
Sami

4 Hackney E1 6AW

D2 Mark East London
P5  
P6

Sami  
Norma

4 Hackney E1 6AW

D2 Mark West London
P7 
P1

Rose  
Rami

5 Harrow HA862E

The data listed in the table are in an unnormalized form. Repeating groups of data appear in many cases, for instance, 
doctors, regions, and council names. There are also multiple instances of data stored in the same cell, such as with the 
patient name and total cost columns. This makes it difficult to update and query data. Moreover, it is not easy to choose a 
unique key and assign it as a primary key.

First Normal Form
To simplify the data structure of the surgery table, let’s apply the first normal form rules to enforce the data atomicity rule and 
eliminate unnecessary repeating data groups. The data atomicity rule means you can only have one single instance value of 
the column attribute in any table cell.

The atomicity problem only exists in the columns of data related to the patients. Therefore, it is important to create a new table 
for patient data to fix this.

Patient ID Patient name Slot ID Total Cost

P1 Rami A1 1500

P2 Kim A2 1200

P3 Nora A3 1600

P4 Kamel A1 2500

P5 Sami A2 1000

P6 Norma A5 2000

P7 Rose A6 1000

This table includes one single instance of data in each cell, which makes it much simpler to read and understand. However, the 
patient table requires two columns, the patient ID and the Slot ID, to identify each record uniquely. This means that you need a 
composite primary key in this table.

Once you have removed the patient attributes from the main table, you just have the doctor ID, name, region, surgery number, 
council and postcode columns left in the table.

Doctor ID Doctor name Region Surgery Number Surgery council Postcode

D1 Karl West London 3 Harrow HA9SDE

D1 Karl East London 4 Hackney E1 6AW



Database Normalization 2

D2 Mark West London 4 Hackney E1 6AW

D2 Mark East London 5 Harrow HA862E

You may have noticed that the table also contains repeating groups of data in each column. You can fix this by separating the 
table into two tables of data: the doctor table and the surgery table, where each table deals with one specific entity.

Doctor ID Doctor name

D1 Karl

D2 Mark

Surgery Number Region Surgery council Postcode

3 West London Harrow HA9SDE

4 East London Hackney E1 6AW

5 West London Harrow HA862E

Second normal form
In the second normal form, you must avoid partial dependency relationships between data. Partial dependency refers to tables 
with a composite primary key. Namely, a key that consists of a combination of two or more columns, where a non-key attribute 
value depends only on one part of the composite key.

Patient ID Patient name Slot ID Total Cost

P1 Rami A1 1500

P2 Kim A2 1200

P3 Nora A3 1600

P4 Kamel A1 2500

P5 Sami A2 1000

P5 Sami A3 1000

P6 Sami A4 1500

P7 Norma A5 2000

P8 Rose A6 1000

P1 Rami A7 1500

In the patient table, you must check whether any non-key attributes depend on one part of the composite key. For 
example, the patient's name is a non-key attribute, and it can be determined by using the patient ID only.

Similarly, you can determine the total cost by using the Slot ID only. This is called partial dependency, which is not allowed in 
the second normal form. This is because all non-key attributes should be determined by using both parts of the composite key, 
not only one of them.

This can be fixed by splitting the patient table into two tables: patient table and appointment table. In the patient table you can 
keep the patient ID and the patient's name.

Patient ID Patient name

P1 Rami

P2 Kim

P3 Nora

P4 Kamel

P5 Sami

P7 Norma

P8 Rose

However, in the appointment table, you need to add a unique key to ensure you have a primary key that can identify each 
unique record in the table. Therefore, the appointment ID attribute can be added to the table with a unique value in each row.



Database Normalization 3

Third Normal Form
For a relation in a database to be in the third normal form, it must already be in the second normal form (2NF). In addition, it 
must have no transitive dependency. This means that any non-key attribute in the surgery table may not be functionally 
dependent on another non-key attribute in the same table. In the surgery table, the postcode and the council are non-key 
attributes, and the postcode depends on the council. Therefore, if you change the council value, you must also change the 
postcode. This is called transitive dependency, which is not allowed in the third normal form.

Surgery number Region Surgery council Postcode

3 West London Harrow HA9SDE

4 East London Hackney E1 6AW

5 West London Harrow HA862E

To fix it you can split this table into two tables: one for the region with the city and one for the surgery.

Surgery number Postcode

3 HA9SDE

4 E1 6AW

5 HA862E

Surgery council Region

Harrow West London

Hackney East London

This ensures the database conforms to first, second, and third normal forms. The following diagram illustrates the stages 
through which the data moves from the unnormalized form to the first normal form, the second normal form, and finally to the 
third normal form.



Database Normalization 4

However, it’s important to link all tables together to ensure you have well-organized and related tables in the database. This can 
be done by defining foreign keys in the tables.

The third normal form is typically good enough to deal with the three anomaly challenges – insertion, update, and deletion 
anomalies – that the normalization process aims to tackle. Completing the third normal form in a database design helps to 
develop a database that is easy to access and query, well-structured, well-organized, consistent, and without unnecessary data 
duplications.


