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Chapter 1

Numerical Series

1.1 Series Definitions :

Definition 1.1.1

Let Un∈N be a sequence of real numbers or complex numbers, we call a series of
general term (Un) The infinite sum of

∑
n≥1 Un, The sequence associated with

the series
∑

n≥1 Un (Sm)m≥1, where for any n ∈ N, Sm =
∑m

n=1 Un is called the
sequence of partial sums

Remark. The sum above begin by u1, but we often begin with u0, u2.

Example

Some of the classical series:

•
∑∞

n=1
1
nα , α ∈ R Riemanian series (Harmonic).

•
∑

n≥1
1
nα (lnn)

β , α, β ∈ R Bertrand series.

•
∑

n≥0 q
n, q ∈ R Geometric series.

•
∑

n≥1
sin(nβ)

nα and
∑

n≥1
cos(nβ)

nα , α, β ∈ R Abel series.

Definition 1.1.2

Let (Un) be a sequence of real numbers ( or complex numbers), and let (Sm)m≥1

be the associated sequence of partial sums.
The series

∑
n≥1 Un is said to be :

• Convergent : if the sequence (Sm) is convergent, in this case
S = limn→∞ Sn is called the sum of series

∑
n≥1 Un, and we write

S =
∑

n≥1 Un.

Moreover, the series Rm = S−Sm =
∑∞

n=m+1 Un is called the rest of order
m of the series

∑
n≥1 Un.

• Divergent : if
∑

n≥1 Un is not convergent.

The nature of a series is the fact that it converge or diverges. Two series are said
to have the same nature if they both converge or both diverge.
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2024-09-26 Lecture 1: Introduction to series

Example

Let q ∈ R and consider the series :
∑

n≥0 q
n = 1 + q + q2 + q3 + ...

Sm =
∑
n≥0

qn =

{
1−qn+1

1−q if q ̸= 1

m+ 1 if q = 1

lim
n→∞

qn =


∞ if q > 1

1 if q = 1

0 if q ∈ (−1, 1)

lim
n→∞

Sn =


∞ if q ≥ 1
1

1−q if q ∈ (−1, 1)

Indefined if q ≤ −1

Remark. ∑
n≥0

qn CV ⇐⇒ q ∈ (−1, 1)

Theorem 1.1.1

Let
∑

n≥1 Un and
∑

n≥1 Vn, be two numerical series then :

∑
n≥1

Un and
∑
n≥1

Vn CV =⇒
∑
n≥1

Un + Vn CV

∑
n≥1

Un CV =⇒
∑
n≥1

λVn CV ∀λ ∈ R(λ ∈ C)

∑
n≥1

Vn CV and
∑
n≥1

Vn DIV =⇒
∑
n≥1

Un + Vn DIV

Theorem 1.1.2 (Necessary Conditions)

Let
∑

n≥1 Un be a series then we have

∑
Un CV =⇒ lim

n→∞
Un = 0

Proof. Let Sn be the associated sequence of partial sums, we have

Sn − Sn−1 = Un

∞∑
n=1

Un CV =⇒ (Sn) CV =⇒ lim
n→∞

Un = lim
n→∞

(Sn − Sn−1) = 0

CHAPTER 1. NUMERICAL SERIES
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Remark.
In practice we use the contra positive that is :

if lim
n→∞

Un ̸= 0 =⇒
∑
n≥1

Un DIV

The inverse Implication is false

lim
n→∞

Un = 0 =⇒
∑

Un CV

For instance :

lim
n→∞

1

n
= 0 But

∑
n≥1

1

n
= ∞

Example

•
∑

n≥1 sin(n) DIV since limn→∞ sin(n) doesn’t exist

•
∑

n≥0
n

n+1 DIV, since the limn→∞
n

n+1 = 1 ̸= 0

•
∑

n≥0 e
−n =

∑
n≥0

(
1
e

)n
= e

e−1

Theorem 1.1.3 (Cauchy Sequence)

Let
∑

n≥1 Un be a series

∑
n≥1

Un CV

{
∀ε > 0 : ∃nε ∈ N : ∀n, p ∈ N
m > p > ne =⇒

∣∣∣∑m
n=p Un

∣∣∣ ≤ ε

Proof. Let (Sk)k≥1 be the sequence of partial sums associated with
∑

n≥1 Un :

∞∑
n=1

Un CV =⇒ (Sk)k≥1 CV

⇐⇒ (Sk)k≥1 is a cauchy sequence

⇐⇒

{
∀ε > 0 : ∃nε ∈ N st. : ∀m, p ∈ N
m > p > nε |Sm − Sp| = |

∑m
n=1 Un −

∑p
n=1 Un| ≤ ε

Corollary 1.1.4

Let
∑

n≥1 Un be a series and let p ∈ N

∑
n≥1

Un CV =⇒
∑
n≥p

Un CV

Proof. Let (Um)m≥1 and let (Vm)m≥1 be respectively the sequences of the partial sums

CHAPTER 1. NUMERICAL SERIES
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of
∑∞

n=1 un and
∑∞

n=p un for m ≥ q :

|Um+q − Um| = |Vn+q − Vn|∣∣∣∣∣
m+q∑

n=q+1

un

∣∣∣∣∣ =
∣∣∣∣∣

m+q∑
n=m+1

un

∣∣∣∣∣
So |Um+q − Um| < ε =⇒ |Vm+q − Vm| < ε

Theorem 1.1.5 (Telescopic series)

Let (Un) be a sequence of real numbers, then the series
∑

n≥1(Un+1 − Un) and
the sequencehave the same nature moreover, if (Un) converge and has l as a limit
then : ∑

n≥1

(Un+1 − Un) = l − U1

Proof. Let (Sn) be the sequence of the partial sums of
∑∞

n≥1 Un+1 − Un we have:

Sn =

m∑
n=1

(Un+1 − Un) = (Un+1 − Un) + (Un − Un−1)... = Un+1 − U1

That shows that Un and Sn have the same nature.

1.2 Positive series

Definition 1.2.1

Let
∑∞

n=1 Un be a series
∑∞

n=1 Un, is said to be positive, if there exist n0 ∈ N
such that Un > 0 for all n ≥ 0.

Example

∞∑
n=0

(−1)n + n− 3

n3 + 1
is a positive series although u0 = −2, u1 = −3

2
, u2 = 0

un > 0, ∀n ≥ 4

Theorem 1.2.1

Let
∑∞

n=1 Un be a positive series and let (Sm)m≥1 be the corresponding series of
partial sums then

∞∑
n=1

Un CV ⇐⇒ (Sm)m≥1 is upper bounded

Proof.

∞∑
n=1

Un CV ⇐⇒ (Sm)m≥1 CV ⇐⇒ (Sm) is upper bounded Sm is increasing

Indeed Sm+1 − Sm = Um+1 > 0

CHAPTER 1. NUMERICAL SERIES
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Theorem 1.2.2

Is a theoritical result, its used to prove a theoritical excerices
Some classical series have the form

∞∑
n=1

f(n)

(
as
∑ 1

nα
f(x) =

1

xα

)

The following result provide a suggicient condition for the convergence of such
type of series.

Theorem 1.2.3 (Comparison with an integral)

Let f : [1,∞) → R+ be a nonincreasing continious function, then :

•
∑∞

n=1 f(n) CV ⇐⇒
∫∞
1

f(x)dx CV

• ∫ ∞

m+1

f(x)dx ≤ Rm =

∞∑
n=m+1

f(x) ≤
∫ ∞

m

f(x)dx ∀m ∈ N

Proof.

f(n+ 1) ≤
∫ n+1

n

f(x)dx ≤ f(n),∀n ∈ N

∫ m+1

1

f(x)dx =

m∑
n=1

∫ n+1

n

f(x)dx ≤ Sm =

m∑
n=1

f(n) ≤ f(1) +

m∑
n=2

∫ n

n−1

f(x)dx

= f(1) +

∫ m

1

f(x)dx

CHAPTER 1. NUMERICAL SERIES
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Example

• Rieman Series :
∑∞

n=1
1
nα , α ∈ R

Let f : [1,∞) → [0,∞) with f(x) = 1
xα

f is non increasing ⇐⇒ α ≥ 0

– α = 0 f(x) =⇒
∑

f(n) DIV.

– α < 0 in this case limn→∞ f(n) ̸= 0 =⇒
∑

f(n) DIV.

– α > 0 In this case f is decreasing

∞∑
n=1

f(n) CV ⇐⇒
∫ ∞

1

1

xα
dx ⇐⇒ α > 1

– Conclusion :
∞∑

n=1

1

nα
⇐⇒ α > 1

• Bertrand series :

f(x) =
1

xα(lnx)
f : [2,∞) → (0,∞)

f is non decreasing ⇐⇒ α > 0 and α = 0 and β ≤ 0

lim
n→∞

f(n) = 0 ⇐⇒ α > 0 or α = 0 and β > 0∑
f(n) CV ⇐⇒

∫ ∞

1

dx

xα(lnx)β
⇐⇒ α > 1 or α = 1 and β > 1

– Conclusion :

∞∑
n=2

1

nα(lnn)β
CV ⇐⇒ α > 1 or α = 1 and β > 1

Theorem 1.2.4 (Comparison by inequality)

Let
∑∞

n=1 Un and
∑∞

n=1 Vn be two positive series and suppose that there exist
n0 ∈ N such that

Un ≤ Vn ∀n ≥ n0

then

∞∑
n=1

CV =⇒
∞∑

n=1

Un CV

∞∑
n=1

Un DIV =⇒
∞∑

n=1

Vn DIV

Proof. Let (Sm) and σm be the sequences of partial sums associated with respectively

CHAPTER 1. NUMERICAL SERIES
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∑∞
n=n0

Un and
∑∞

n=n0
Vn.

∞∑
n=1

Vn CV ⇐⇒
∞∑

n=n0

CV ⇐⇒ (σm)m≥n0 is upper bound

=⇒ (Sm)m≥n0
is upper bound

⇐⇒
∞∑

n=n0

Un CV

⇐⇒
∞∑

n=1

Un CV

Example

•
∑∞

n=0
1

n2+1

1

n2 + 1
≤ 1

n2
and

∞∑
n=1

1

n2
CV

=⇒
∞∑

n=0

1

n2 + 1
CV

•
∑∞

n=0 e
−n2

e−n2

≤ e−n = (
1

e
)n∑

(
1

e
)n CV =⇒

∑
e−n2

CV

Corollary 1.2.5 (Comparison by inequalities)

Let
∑∞

n=1 Un and
∑∞

n=1 Vn be two positive series and suppose that there exist
a > 0 and b > 0 n0 ∈ N such that

a ≤ Un

Vn
≤ b,∀n ≥ n0

then the series
∑∞

n=1 Un and
∑∞

n=1 Vn have the same nature.

Proof. we have
aVn ≤ Un ≤ bVn,∀n ≥ n0

we conclude by appliying theorem 1.2.4.

Corollary 1.2.6 (Comparison by equivalence)

Let
∑∞

n=1 Un and
∑∞

n=1 Vn be two positive series, then :

Un ∼∞ Vn =⇒
∑

Un and
∑

Vn have the same nature.

Proof. Un ∼∞ Vn ⇐⇒ limn→∞
Un

Vn
= 1

Let ε0 chosen in (0, 1), by the definition of the limit there is n0 ∈ N such that

0 < l − ε0 ≤ Un

Vn
≤ l + ε0 ∀n ≥ n0

By the Carrolary 1.2.5,
∑∞

n=1 Un and
∑∞

n=1 Vn have the same nature

CHAPTER 1. NUMERICAL SERIES
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Example

•
∑∞

n=1 sin(
1
n ) DIV

sin(
1

n
) ∼∞

1

n
and

∞∑
n=1

1

n
DIV

•
∑∞

n=1
n+sin(n)+1

n3 CV

n+ sin(n) + 1

n3
∼∞

1

n2
CV

Corollary 1.2.7 (Riemann Criterion)

Let
∑∞

n=1 Un be a positive series, and suppose there is α ∈ R such that
limn→∞ nαUn = l then :

• If l ∈ [0,∞), and α > 1, then
∑∞

n=1 Un CV

• If l ∈ (0,∞) or l = ∞ and α ≤ 1, then
∑∞

n=1 Un DIV.

Remark. (Reminders)

Un CV ⇐⇒ (Sm) Bounded

1

nα(lnn)β
(α > 1) or (α = 1, β > 1)

Theorem 1.2.8 (Logarithmic Comparison)

Let
∑∞

n=1 Un and
∑∞

n=1 Vn be two positive series and suppose that there is n0 ∈ N
such that :

Un+1

Un
≤ Vn+1

Vn
n > n0

then

∞∑
n=1

Vn CV =⇒
∞∑

n=1

Un CV

∞∑
n=1

Un DIV =⇒
∞∑

n=1

Vn DIV

Proof. For n > n0 :

Un

Un0

=
Un

Un−1
· Un−1

Un−2
· · · Un0+1

Un0

≤ Vn

Vn−1
· Vn−1

Vn−2
· · · Vn0+1

Vn0

=
Vn

Vn0

=⇒ Un ≤
(
Un0

Vn0

)
Vn

Conclusion follows from thoerem 1.2.4.
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Theorem 1.2.9 (D’almbert criterion)

Let
∑∞

n=1 Un be a positive series such that :

lim
n→∞

Un+1

Un
= l

Then : {
l < 1 =⇒

∑∞
n=1 Un CV

l > 1 =⇒
∑∞

n=1 Un DIV

Proof. • Suppose l > 1, let ε > 0 s.t : l − ε > 1, set Vn = (l − ε)n∣∣∣∣Un+1

Un
− l

∣∣∣∣ < ε

=⇒ l − ε <
Un+1

Un
< l + ε

=⇒ Vn+1

Vn
<

Un+1

Un
< l + ε

=⇒ Vn DIV

since Vn+1

Vn
= l−ε > 1,

∑
Vn DIV, and from theorem 1.2.8, it gives that

∑
Un DIV.

• Suppose now that l < 1 and let ε > 0 be such that l+ ε < 1, set Vn = (l+ ε)n, we
know that |

∑
Vn| Converges, for such a real ε > 0, there exist a natural numbers

∃n0 ∈ N such that :

l − ε ≤ Un+1

Un
≤ l + ε =

Vn+1

Vn

Conclusion follows from theorem 1.2.8

Example∑∞
n=1

n!
nn , Un = n!

nn

Un+1

Un
=

(n+ 1)!

(n+ 1)n+1
· n

n

n!
=

nn

(n+ 1)n
=

(
n

n+ 1

)n

=

(
1− 1

n

)n

→ 1

e
< 1

So by d’almbert criterion :
∑

Un CV.

Theorem 1.2.10 (Cauchy Criterion)

Let
∑∞

n=1 Un be a positive series and suppose that :

lim
n→∞

n
√
Un = l then :

l < 1 =⇒
∞∑

n=1

Un CV

l > 1 =⇒
∞∑

n=1

Un DIV

CHAPTER 1. NUMERICAL SERIES



2024-10-03 Lecture 3: Other Comparison Criterias

Proof. For arbitrary ε > 0, there is n0 ∈ N such that :∣∣∣ n
√

Un − l
∣∣∣ < ε

=⇒ l − ε < n
√
Un < l + ε

=⇒ (l − ε)n < Un < (l + ε)n

We conclude by theorem 1.2.4.{
l > 1 l − ε > 1 =⇒

∑
Un DIV

l < 1 (and let ε be such that ) l − ε < 1 =⇒
∑

Un CV

Example∑∞
n=1

1
n2

(
1 + a

n

)n2

, a ∈ R

n
√

Un =
1

n
2
n

(
1 +

a

n

)n
→∞ ea

{
if a < 1

∑
Un DIV

if a > 1
∑

Un CV

Corollary 1.2.11 (Comments)

Let
∑

n≥1 Un be a positive series, then

lim
n→∞

Un+1

Un
= l =⇒ lim

n→∞
n
√

Un = l

(Ratio Test ) =⇒ (Root Test)

Proof. Indeed, for ε > 0,∃n0 ∈ N s.t :

l − ε <
Un+1

Un
< l + ε

for n large enough :

(l − ε)n−n0+1 ≤ Un+1

Un
· · · Un0+1

Un0

≤ (l + ε)n−n0+1

(l − ε)n−n0+1 ≤ Un+1

Un
≤ (l − ε)n−n0+1

(l − ε)n−n0+1Un0
≤ Un+1 ≤ (l − ε)n−n0+1Un0

(l − ε)
n−n0+1

n+1 U
1

n+1
n0 ≤ U

1
n+1

n+1 ≤ (l − ε)
n−n0+1

n+1 U
1

n+1
n0

=⇒ l − ε ≤ lim
n→∞

n
√
Un ≤ lim

n→∞
n
√

Un ≤ l + ε

Since ε is arbitrary, we conclude that :

lim
n→∞

n
√

Un = lim
n→∞

n
√

Un = lim
n→∞

n
√
Un = l

This ends the proof.
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Remark.

• Inverse implication is not true.

– Take Un as a counter example :

Un =

{
2l · 3l n = 2l

2l · 3l+1 n = 2l + 1
=⇒

{
n
√
Un → 6

limn→∞
Un+1

Un
Doesnt exist.

• if limn→∞
Un+1

Un
< 1 or limn→∞

n
√
Un < 1 =⇒ limn→∞

∑
Un CV.

• if limn→∞
Un+1

Un
> 1 or limn→∞

n
√
Un > 1 =⇒

∑
Vn DIV.

• limn→∞
Un+1

Un
= limn→∞

(
sup

{
Uk+1

Uk
: k ≥ n

})
Theorem 1.2.12 (Raabe-Duhamel)

Let
∑

n≥1 Un be a positive series such that :

Un+1

Un
= 1− l

n
+ o(

1

n
) near ∞

Where l ∈ R, then :

• if l > 1, then the series
∑

n≥1 Un CV.

• if l < 1, then the series
∑

n≥1 Un DIV.

Proof. Consider the case l > 1, and let α ∈ (1, l), and let Vn = 1
nα

Vn+1

Vn
=

(
n

n+ 1

)α

=

(
1 +

1

n

)−α

=∞ 1− α

n
+ o(

1

n
)

near ∞ we have :
Vn+1

Vn
− Un+1

Un
=

l − α

n
+ o(

1

n
)

This means that :

lim
n→∞

n

(
Vn+1

Vn
− Un+1

Un

)
= l − α > 0 =⇒ Vn+1

Vn
>

Un+1

Un

Using the logarithmic comparson,
∑

Un CV.
Similarly if l < 1 we take β ∈ (l, 1) and Vn = 1

nβ we obtain :

Vn

Vn
− Un

Un+1
=

l − β

n
+ o(

1

n
)

we conclude using the same way that
∑

Un DIV.
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Example

•
∑

n≥1
1
nα , Un = 1

nα

Un+1

Un
=

(
n

n+ 1

)α

= 1− α

n
+ o(

1

n
)

By Raabe-Duhamel criterion :{
if l > 1

∑
Un CV

if l < 1
∑

Un DIV

•
∑

Un with Un = n!
(a+1)(a+2)(a+3)·(a+n)a ∈ (0,∞)

Un+1

Un
=

n+ 1

(a+ n+ 1)
=

1 + 1
n

1 + a+1
n

= (1 +
1

n
)(1 +

a+ 1

n
)−1 = (1 +

1

n
)(1− a+ 1

n
+ o(

1

n
))

= 1− a

n
+ o(

1

n
)

By Raabe-Duhamel criterion :{
if l > 1

∑
Un CV

if l < 1
∑

Un DIV

Theorem 1.2.13 (Gauss Theorem)

Let
∑

n≥1 Un be a positive series and suppose that there s α > 1 and l ∈ R such
that :

Un+1

Un
= 1− l

n
+O(

1

nα
) at ∞

then : {
if l > 1

∑
Un CV

if l < 1
∑

Un DIV

Remark.

f(x) = O(g(x)) at x0 ⇐⇒ f(x)

g(x)
is bounded near x0

Proof. Let Vn = n2Un :

Vn+1

Vn
=

(
n+ 1

n

)2
Un+1

Un
=

(
1 +

1

n
+O(

1

n2
)

)(
1− l

n
+O(

1

nα
)

)
{
1 + l

n − l
n +O( 1

n2 ) if α ≥ 2

1 + l
n − l

n +O( 1
nα ) if α < 2

Vn+1

Vn
= 1 +O(

1

nβ
) with β = min(2, α)

ln

(
Vn+1

Vn

)
= ln

(
1 +O(

1

nβ
)

)
= O(

1

nβ
)
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=⇒ ln
(

Vn+1

Vn

)
≤ M

nβ ∀n > n0 M > 0 The series
∑

lnVn+1 − lnVn CV.

S =
∑

lnVn+1 − lnVn = lim
n→∞

Sm

= lim
n→∞

∑
lnVn+1 − lnVn

=⇒ lim
n→∞

lnVn+1 = S + lnV1 = k

lim
n→∞

Vn+1 = ek

Conclusion : limn→∞ n2Un = ek =⇒ Un ∼ ek

n2 at ∞.

Example

•
∑

1
nα ,

1
nα = Un

Un+1

Un
=

(
1 +

1

n

)−α

= 1− α

n
+O(

1

n2
)

By Gauss Criterion : {
if α > 1 then

∑
1
nα CV

if α < 1 then
∑

1
nα DIV

•
∑

Un Un = n!en

nn+p p ∈ R
HINT :

Un+1

Un
=

(n+ 1)!en+1

(n+ 1)n+1+p

nn+p

n!en
= e

(
n

n+ 1

)n+p

= e

(
1 +

1

n

)−(n+p)

=

(
1 +

1

n

)−(n+p)

= e−(n+p) ln (1+ 1
n )

1.3 Alternating Series

An alternating series is a series whose general term, changes sign infinitely many times

Example

The series
∑∞

n=1 n sinn is an alternating series.

Definition 1.3.1

The series
∑∞

n=1 Un is said to be absolutely convergent if
∑∞

n=1 |Un| is convergent.

Corollary 1.3.1

If a series converges absolutely, it converges.

Proof. Let
∑∞

n=1 Un be a series converging absolutely (
∑∞

n=1 |Un|) by theorem 1.1.5,
∀ε > 0, ∃nε ∈ N, such that for all m, p ∈ N :

m ≥ nε =⇒
m+p∑

n=m+1

|Un| ≤ ε
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But since,
∣∣∣∑m+p

n=m+1 Un

∣∣∣ ≤∑m+p
n=m+1 |Un|, for all m ≥ nε, and for all p ∈ N we have :∣∣∣∣∣

m+p∑
n=m+1

Un

∣∣∣∣∣ ≤ ε

Hence,
∑∞

n=1 Un converges.

Example

•
∑∞

n=1 Un, with Un = cosn
n2 . ∣∣∣∣Un =

|cosn|
n2

∣∣∣∣ ≤ 1

n2

Since
∑ 1

n2
CV =⇒

∑ cosn

n2
CV Absolutely

=⇒
∞∑

n=1

cosn

n2
CV

•
∑∞

n=2
(−1)n

n
√
n+(−1)n∣∣∣∣ (−1)n

n
√
n+ (−1)n

∣∣∣∣ = |(−1)n|
|n
√
n+ (−1)n|

=
1

n
√
n+ (−1)n

∼∞
1

n
√
n

 1

n
√
n+ (−1)n

=
1

n
√
n

 1

1 + (−1)n

n
√
n


∞∑

n=1

1

n
√
n

CV =⇒
∞∑

n=1

∣∣∣∣ (−1)n

n
√
n+ (−1)n

∣∣∣∣ CV =⇒
∑ (−1)n

n
√
n+ (−1)n

CV

•
∑∞

n=1
(−1)n√

n
∞∑

n=1

∣∣∣∣ (−1)n√
n

∣∣∣∣ = ∞∑
n=1

1√
n

DIV

Theorem 1.3.2 Leibniz

Consider the series
∑∞

n=1(−1)nan If (an) is an non increasing having limn→∞ an =
0, then

∑∞
n=1(−1)nan converges.

Proof. Let (Sm)m≥1 be the sequence of partial sums associated with
∑∞

n=1(−1)nan.

S2m+2 − S2m =

2m+2∑
n=1

(−1)nan −
2m∑
n=1

(−1)nan

= (−1)2m+1a2n+1 + (−1)2m+2a2m+2 = a2m+2 − a2m+1 ≤ 0

(S2m)m ≥ 1 is non increasing.

S2m+3 − S2m+1 = (−1)2m+2a2m+2 + (−1)2m+3a2m+3 = a2m+2 − a2m+3 ≥ 0

S2m+1 − S2m = (−1)2m+1a2m+1 → 0 ( as m → ∞)

Conclusion (S2m) and (S2m+1) are adjacent, therefore (Sm) converges, that is∑∞
n=1(−1)nan CV.
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Example

∞∑
n=1

(−1)n

n2
CV ⇐⇒ α > 0

Indeed, {
If α ≤ 0 limn→∞

(−1)n

nal ̸= 0 (Does not exist)

If α > 0 we have
(

1
nα

)
is decreasing and limn→∞

1
nα = 0

Theorem 1.3.3 (Abel’s Criterion

Let (Un)n≥1 and (Vn)n≥1 be two real sequences, if the following conditions are
satisfied.

• ∃M > 0, |
∑m

n=1 Un| ≤ M ∀m ∈ N

•
∑∞

n=1 |Vn − Vn+1| CV.

• limn→∞ Vn = 0

Then :
∞∑

n=1

UnVn CV

Proof. For any m, p ∈ N, Let Sm =
∑m+p

n=m+1 Vn∣∣∣∣∣
m+p∑

n=m+1

UnVn

∣∣∣∣∣ =
∣∣∣∣∣

m+p∑
n=m+1

(Sn − Sn−1)Vn

∣∣∣∣∣
=

∣∣∣∣∣
m+p∑

n=m+1

SnVn −
m+p∑

n=m+1

Sn−1Vn

∣∣∣∣∣
=

∣∣∣∣∣
m+p∑

n=m+1

SnVn −
m+p−1∑
n=m

SnVn+1

∣∣∣∣∣
=

∣∣∣∣∣
m+p−1∑
n=m+1

Sn(Vn − Vn+1)− SmVm+1 + Sm+pVm+p

∣∣∣∣∣
≤ M

(
m+p−1∑
n=m+1

|Vn − Vn+1|+ |Vm+1|+ |Vm+p|

)

Let ε > 0, since limn→∞ Vn = 0, and
∑∞

n=1 |Vn − Vn+1| CV, there is nε ∈ N :

m+p−1∑
n=m+1

|Vn − Vn+1| ≤
ε

3M
∀m ≥ nε ∀p ∈ N

=⇒ |Vn| ≤
ε

3M
∀n ≥ nε

Hence for m ≥ nε :

m+p−1∑
n=m+1

|SnVn| ≤ M

(
m+p−1∑
n=m+1

|Vn − Vn+1|+ |Vm+1|+ |Vm+p|

)
≤ M

( ε

3M
+

ε

3M
+

ε

3M

)
= ε

The proof is complete.
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Example

∞∑
n=1

cosnx

nα
,

∞∑
n=1

sinnx

nα
, x ∈ R, α > 0

Set Un = cosnx (resp. Un = sinnx), and Vn = 1
nα

• limn→∞ Vn = 0 (α > 0)

• |Vn − Vn+1| = Vn − Vn+1 = 1
nα− 1

(n+1)α
= 1

nα

(
1− 1

(1+ 1
n )

α

)
∼∞

α
nα+1

and
∑

1
nα → CV (α+ 1 > 1), so it converges.

•
cosnx = R

(
einx

)
sinnx = I

(
einx

)
∣∣∣∣∣

m∑
n=0

cosnx

∣∣∣∣∣ = R

(
m∑

n=0

einx

)
∣∣∣∣∣

m∑
n=0

sinnx

∣∣∣∣∣ = I

(
m∑

n=0

einx

)

∣∣∣∣∣
m∑

n=0

einx

∣∣∣∣∣ =
∣∣∣∣∣

m∑
n=0

(
eix
)n∣∣∣∣∣ =

∣∣∣∣1− ei(m+1)x

1− eix

∣∣∣∣ =
∣∣1− e−ix − ei(m+1)x + eimx

∣∣
|1− eix|

≤ 4

1− eix
= M

Conclusion :

∞∑
n=1

cosnx

nα
and

∞∑
n=1

sinnx

nα
CV ⇐⇒ α > 0

Use of Asymptotic Development :

∞∑
n=2

(−1)n√
n+ (−1)n

set Un =
(−1)n√
n+ (−1)n

Un =
(−1)n

√
n
(
1 + (−1)n√

n

) =

(−1)n√
n

1 + (−1)n√
n

=
x

1 + x

f(x) =
x

1 + x
= x− x2 + x3 + o(x3) near 0

Un =
(−1)n√

n
− 1

n
+

(−1)n

n
√
n

+ o

(
1

n
√
n

)
∞∑

n=1

(−1)n√
n

CV by Leibneiz

∞∑
n=1

1

n
DIV

∑ (−1)n

n
√
n

CV

∑∞
n=1 o

(
1

n
√
n

)
, CV absolutely so CV

Indeed limn→∞

∣∣∣o( 1
n
√

n

)∣∣∣
1

n
√

n

= 0 =⇒
∣∣∣o( 1

n
√
n

)∣∣∣ ≤ M
n
√
n

∞∑
n=1

M

n
√
n

CV =⇒
∞∑

n=1

∣∣∣∣o( 1

n
√
n

)∣∣∣∣ CV

=

∞∑
n=1

o

(
1

n
√
n

)
CV
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Chapter 2

Sequences of functions

2.1 Generalities

In all this chapter, we let I be an interval and we denote by F(I,R) the set of real
function defined on I.
For any bounded function f ∈ F(I,R), the symbol ||f || denoted the sequence of |f | on
I, that is :

||f || = supx∈I |f(x)|

Definition 2.1.1

We call a sequence of functions any mapping N → F(I,R), usually a sequence of
functions is denoted by (fn)n≥0, (gn)n≥1 . . .

Example

• I = [0, 1], fn(x) = xn

• I = R, gn(x) = enx

Definition 2.1.2

let (fn)n≥1 ⊂ F(I,R) be a sequence of functions, we say that (fn)n≥1 is point
wise convergent to f ∈ F(I,R) on I, if for all x ∈ I we have

lim
n→∞

fn(x) = f(x)

Pointwise convergence defines the converges of a function in term of their values of
their domains, we say that a sequence (fn)n≥1 is pointwise convergent if it converges to
some functions.

18
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Example

• (fn)n≥1 defined by fn(x) = xn, x ∈ [0, 1]

lim
n→∞

fn(x) =

{
0 if x ∈ (0, 1)

1 if x = 1

• fn(x) =
x
n x ∈ R

lim
n→∞

fn(x) = 0

• fn(x) = 1 + e−nx x ∈ [0,∞)

lim
n→∞

fn(x) =

{
2 if x = 0

1 if x > 0

Pointwise converges is the netural way to define the convergence of a seqeucnce of af
unctions? Unfortunately, this of convergence doesnt preserve certain properties of the
sequence, the following examples illustrate this situation.

Example

Let (fn)n≥1, be the sequence defnied on (0, π/2) by fn(x) =
nx

nx2+cos x
We have

lim
n→∞

fn(x) =
1

x

Note that for all n ∈ N

0 ≤ fn(x) ≤
nπ

2

nx2 + cosx
= gn(x)

g′n(x) =
nπ

2 − (2xn− sinx)

(nx2 + cosx)
2 ≤ 0 =⇒ gn(x) ≤

nπ

2
,∀x ∈ (0,

π

2
)

For all n ∈ N, fn is bounded and continious, In particular, fn is intergrable on
[0, 1], But f is not bounded (limx→0 fn(x) = ∞) and f is not integrable.

Example

fn(x) =
x2√
x2 + 1

n

, x ∈ R, lim
n→∞

fn(x) = |x|

For all n ∈ N, fn is diffirentiable at 0 but f is not diffirentiable at 0.

2.2 Uniform Convergence

In this section, we introduce the mode of convergence stronger than pointwise one, the
diffirence between the two modes is analogous to that of uniform continiouty.
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Definition 2.2.1

Let (fn)n≥1 ⊂ F(I,R) be a sequence of functions and let f ∈ F(I,R) we say that
(fn)n is uniformaley convergent to f on I , and we write fn →U f on I, if for all
ε > 0 there exist nε ∈ N such that for all n ∈ N

n ≥ nε =⇒ |fn(x)− f(x)| ≤ ε ∀x ∈ I

Remark. Notice that a sequence (fn)n≥1 ⊂ F(I,R) converges uniformalley to
f ∈ F(I,R) if and only if

supx∈I |fn(x)− f(x)| = ||fn − f || → 0 as n → ∞(
lim
n→∞

supx∈I |fn(x)− f(x)|
)
= lim

n→∞
||fn − f || = 0

Corollary 2.2.1

If a sequence of functions (fn)n≥1 converges uniformally to f ∈ F(I,R), then for
all x ∈ I, we have limn→∞ fn(x) = f(x).

Proof. Easy.

Example

fn(x) = xn x ∈ I = [0, 1]

lim
n→∞

fn(x) =

{
1, if x = 1

0, if x ∈ [0, 1]
= f(x)

Example

fn(x) =


2x 0 ≤ x ≤ 1

2n

−2x+ 1
n

1
2n ≤ x ≤ 1

n

0 1
n ≤ x ≤ 1

lim
n→∞

fn(x) = 0 fn → 0 on I = [0, 1]

||fn − 0|| = supx∈[0,1] |fn(x)| =
1

n
→ 0 as n → ∞

So fn →U 0

Remark. Study the uniform convergence of (fn)n∈N with fn(x) =
(
1 + x

n

)n
on

R.
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Theorem 2.2.2 (Cauchy)

let (fn)n≥1 ⊂ F(I,R) be a sequence of functions, f ∈ F(I,R).

fn →U f ⇐⇒

{
∀ε > 0, ∃ne ∈ N
∀n,m ∈ N, m, n ≥ ne =⇒ ||fn − fm|| ≤ ε

Proof.
( =⇒ )

If fn →U fm,then for ∀ε > 0, ∃ne ∈ N such that ∀n ∈ N:

n ≥ ne =⇒ ||fn − f || ≤ ε

Hence for m,n ≥ ne we have :

||fn − fm|| = supx∈I |fn(x)− fm(x)|
≤ supx∈I (|fn − f(x)|+ |fm(x)− f(x)|)
≤ supx∈I |fn(x)− f(x)|+ supx∈I |fm(x)− f(x)|

= ||fn − f ||+ ||fm − f || ≤ ε

2
+

ε

2
= ε

( ⇐= )

First, let ε > 0, ∃ne ∈ N such that ∀n,m ∈ N

n,m ≥ ne =⇒ |fn(x)− fm(x)| ≤ ||fn − fm|| ≤ ε ∀x ∈ I

This means that fn for all x ∈ I, (fn(x)) is a cauchy sequence, so it converge to
some f(x).
For any ε > 0,∃ne ∈ N such that ∀n,m ∈ N.

|fn(x)− fm(x)| ≤ ε ∀x ∈ I

this implies that

ε ≥ lim
m→∞

|fn(x)− fm(x)| abs is continious so =⇒
∣∣∣fn(x)− lim

m→∞
fm(x)

∣∣∣
= |fn(x)− f(x)| ∀n ≥ ne ∀x ∈ I

Hence
||fn − f || = supx∈I |fn(x)− f(x)| ≤ ε ∀n ≥ ne

That is fn →U f on I.

2.3 Properties of the uniform convergence

In all this section, we let (fn) ⊂ F(I,R) be a sequence of functions and f ∈ F(I,R).

Theorem 2.3.1 (Boundedness)

Suppose that fn →U f on I and there is n0 ∈ N such that fn is bounded on I for
all n ≥ n0, Then f is bounded on I.

Proof. For any ε > 0, ∃ne ∈ N such that

∀n ∈ N, n ≥ ne =⇒ (|fn(x)− f(x)| ≤ ε ∀x ∈ I)
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Let n∗ ≥ max(ne, n0), then ∀x ∈ I

|f(x)| ≤ |fne(x)− f(x)|+ |fn0(x)|
≤ ε+ ||fn∗ ||

So f is bounded on I.

Theorem 2.3.2 (Integrablity)

Suppose that fn →U f on I and there is n0 ∈ N such that fn is integrable
( In Riemann sens ) on [a, b] ⊂ I for all n ≥ n0. Then f is integrable on [a, b],
and we have

lim
n→∞

∫ b

a

fn(t)dt =

∫ b

a

lim
n→∞

fn(t)dt =

∫ b

a

f(t)dt

Proof. Let ε > 0, there is ne ∈ N such that for all n ≥ ne, we have :

fn(x)−
ε

4(b− a)
≤ f(x) ≤ fn(x) +

ε

4(b− a)

Also, for all n ≥ n0, there is a subdivision {x0, x1, . . . , xk}

(a = x0 < x1 < x2 < . . . < xk = b)

such that
k∑

i=1

(Mni −mni) (xi − xi−1) ≤
ε

2

We have
Mni = supx∈[xi−1,xi]fn(x) mni = infx∈[xi−1,xi]fn(x)

Let
Mi = supx∈[xi−1,xi]f(x) and mi = infx∈[xi−1,xi]f(x)

Therefore we have :

Mni −
ε

4(b− a)
≤ Mi ≤ Mni +

ε

4(b− a)

mni −
ε

4(b− a)
≤ mi ≤ mni +

ε

4(b− a)

S(f, (xi))− s(f, xi) =

n∑
i=1

(Mi −mi)(xi − xi−1)

=

n∑
i=1

[
(Mni −mni) +

ε

2(b− a)

]
(xixi−1)

=

n∑
i=1

(Mni −mni) (xi − xi−1) +
ε

2(b− a)

n∑
i=1

(xi − xi−1)

≤ ε

2
+

ε

2
= ε

We have proved that f is integrable.∣∣∣∣∣
∫ b

a

f(t)dt−
∫ b

a

fn(t)dt

∣∣∣∣∣
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≤
∫ b

a

|fn(t)− f(t)| dt

≤
∫ b

a

||fn − f || dt

= (b− a) ||fn − f || = 0

Corollary 2.3.3

Suppose that fn →U f on [a, b] ⊂ I, and ∃n0 ∈ N, such that fn is integrable on
[a, b] for all n ≥ n0. Then Fn →U F , on [a, b] where

Fn(x) =

∫ x

a

fn(t)dt and F (x) =

∫ x

x

f(t)dt

Proof. For all x ∈ [a, b] we have

|Fn(x)− F (x)| ≤
∫ x

a

|fn(t)− f(t)| dt

≤ (b− a) ||fn − f ||

This implies :

||Fn − F || = supx∈[a,b] |Fn(x)− F (x)|
≤ (b− a) ||fn − f || → 0 as n → ∞

Theorem 2.3.4 (Permutation of limits)

Suppose that fn →U f on I and there is n0 ∈ N such that limx→a fn(x) = ln ∈ R
∀n ≥ n0, where a ∈ I, then, limx→a f(x) = l ∈ R, and we have

lim
n→∞

( lim
x→a

fn(x)) = lim
x→a

( lim
n→∞

fn(x))

Proof. fn →U f =⇒ (fn) is a Cauchy sequence.
Hence, for any ε > 0, ∃ne ∈ N such that ∀n,m ∈ N.

|fn(x)− fm(x)| ≤ ε ∀x ∈ I ∀n,m ≥ ne

Passing to the limit, where x → a, we obtain

|ln − lm| ≤ ε ∀n,m ≥ ne

This means that (ln) is a cauchy sequence and ln → l ∈ R. Let ε > 0, there is n1 ∈ N
such that ∀n ≥ n1

|fn(x)− f(x)| ≤ ε

3
∀x ∈ I (fn →U f) on I

For all n ≥ ne ∃δn,e > 0 |x− a| ≤ δn,e =⇒ |fn(x)− ln| ≤
ε

3

∃n2 ∈ N, |ln − l| ≤ ε

3
∀n ≥ n2

Choosing n∗ ≥ max(n0, n1, n2),∃δn∗,ε > 0
such that |x− a| ≤ δn∗,ε

|f(x)− l| ≤ |f(x)− fn∗(x)|+ |fn∗(x)− ln|+ |ln − l|

≤ ε

3
+

ε

3
+

ε

3
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This shows that limx→a f(x) = l in other words.

lim
x→a

(
lim

n→∞
f(x)

)
= l = lim

n→∞
ln = lim

n→∞

(
lim
x→a

fn(x)
)

lim
x→a

f(x) = l ∀ε > 0,∃δ > 0,∀x ∈ I, |x− x0| ≤ δ =⇒ |f(x)− f(x0)| ≤ ε

|f(x)− l| ≤ |fn(x)− fn(x)|+ |fn(x)− l|
≤ |f(x)− fn(x)|+ |fn(x)− ln|+ |ln − l|

Remark. In Theorem 2.3.4 a can be ∞ or −∞.
Also, Theorem 2.3.4 holds if ∃n0 ∈ N such that limx→∞ fn(x) = ∞ or −∞, in
this case, we have limx→a f(x) = ∞ or −∞.

Corollary 2.3.5 (Continiuty)

Suppose that fn(x) → f on I, and there is n0 ∈ N such that fn is continious at
a, where a ∈ I, then f is continious on a, in particular if fn is continious on I for
all n ≥ n0, then f is continious on I.

Proof.

lim
x→a

f(x) = lim
x→a

(
lim

n→∞
fn(x)

)
= lim

n→∞

(
lim
x→a

fn(x)
)

= lim
n→∞

fn(a) = f(a).

Theorem 2.3.6 (Differentiability)

Suppose that there is n0 ∈ N such that fn is continuously differentiable on [a, b] ⊂
I, If f ′

n → g uniformally on [a, b] and there is x0 ∈ [a, b], such that fn(x0)
converges, then :

(fn)n≥1 is uniformally convergent on [a, b] to some function f , f is continuously
differentiable and we have f ′ = g on [a, b].

Proof. For all n ≥ n0, and we have :

fn(x) = fn(x0) +

∫ x

x0

f ′
n(t)dt

By Corollary 2.3.3, we have :

fn →U α+

∫ x

x0

g(t)dt = f(x)

with f ′(x) = g(x)
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Corollary 2.3.7

Suppose that there is n0 ∈ N such that fn ∈ Ck([a, b]) with [a, b] ⊂ I, and k ≥ 2.

If f
(k)
n → g on [a, b] and there is x0 ∈ [a, b], such that

(
f
(i)
n (x0)

)
converge for all

i ∈ {0, 1, . . . , k − 1} then
(
f
(i)
n

)
n≥1

converge uniformaly ∀i ∈ {0, 1, . . . , k − 1} to

some f ∈ Ck[a, b] and we have f (k) = g.

Proof.

fk−1
n (x) = f (k−1)

n (x0) +

∫ x

x0

f (k)
n (t)dt.

=⇒ f (k−1)
n →U +α+

∫ x

x0

g(t)dt

By applying k − 1 times.
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Chapter 3

Series of Functions

In all this chapter, we let I be a real interval and we denote by F(I,R) the set of all
real function defined on I, For f ∈ F(I,R) with f bounded, the symbol ∥f∥ denotes
the supremum of |f | on I, that is

∥f∥ = supx∈I |f(x)|

3.1 Definitions :

Definition 3.1.1

let (fn)n≥1 ⊂ F(I,R) be a sequence of functions, we call the series of general
term fn, the infinite sum

∑∞
n=1 fn(n

∑∞
n=1 fn), the sequence (Sm)m≥1 where

Sm(x) =
∑m

n=1 f(x) is called the sequence of partial sums associated with the
series

∑∞
n=1 fn, the series Rm =

∑∞
n=m+1 fn is called the rest of order m.

Example

1.
∑∞

n=1 x
n Geometric series

2.
∑∞

n=1
sinnx

n

Definition 3.1.2

Let (fn)n≥1 ⊂ F(I,R) be a sequence of functions and let (Sm)m≥1 be the
associated sequence of partial sums, the series

∑
n≥1 fn is said to be convergent

at x0 ∈ I, if the series
∑

n≥1 fn(x0) converges.

in such situation if limn→∞ Sn(x0) = S(x0) we say that the series
∑∞

n=1 fn(x0)
then it’s sum equal to S(x0) and we write

S(x0) =

∞∑
n=1

fn(x0)

The set

D =

{
x ∈ I :

∑
x=1

fnx CV

}

Is called the domain of convergence of the series
∑∞

n=1 fn
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Example

1.
∑∞

n=0 x
n D = (−1, 1) S(x) = 1

1−x

2.
∑∞

n=0(−1)nxn D = (−1, 1) S(x) = 1
1+x

3.
∑∞

n=0
xn

n! D = R

an =

∣∣∣∣xn

n!

∣∣∣∣ = |x|n

n!

an+1

an
=

|x|
n+ 1

→ 0

=⇒
∑
n≥0

∣∣∣∣xn

n!

∣∣∣∣ CV ∀x ∈ R

=⇒
∑
n≥0

xn

n!
CV ∀x ∈ R

=⇒ D = R

3.2 Uniform and Normal Convergence

In all this section, we let (fn)n∈N ⊂ F(I,R) be a sequence of function and let (Sm)m≥1

the sequence of partial sums associated with the series
∑

n≥1 fn

Definition 3.2.1

The series of functions,
∑∞

n=1 fn is said to uniformally convergent on I, if the
sequence (Sm)m∈N is uniformally convergent on I.

Theorem 3.2.1 Cauchy

This series
∑∞

n=1 converge uniformaly on I, if and only if

∀ε > 0, ∃ne ∈ N s.t. ∀m, p ∈ N

m ≥ ne =⇒

∣∣∣∣∣
∣∣∣∣∣

m+p∑
n=m+1

fn

∣∣∣∣∣
∣∣∣∣∣ ≤ ε

Proof. Easy!, yeah sure.
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Example∑∞
n=1 x

n Dc = (−1, 1) and it’s sum

S(x) =
1

1− x
=

∞∑
n=1

xn

Sm(x) =

m∑
n=0

xn |Sm(x)| ≤ m+ 1 ∀x ∈ Dc

But limm→∞ Sm(x) = 1
1−x is not bounded.

So (Sm)m∈N does not converge uniformally on (−1, 1)

Notice

∫ 1

−1

(Sm)dx CV and

∫ 1

−1

S(x)dx DIV

Let a ∈ (0, 1), we have :

supx∈[−a,a] |S(x)− Smx| = supx∈[−a,a]

∣∣∣∣∣
∞∑

n=m+1

xn

∣∣∣∣∣ = supx∈[−a,a]

∣∣∣∣∣xm+1
∞∑

n=0

xn

∣∣∣∣∣
= supx∈[−a,a]

∣∣xm+1
∣∣

1− x
≤ amsupx∈[−a,a]

1

1− x
=

am

1− a

So
∑∞

n=0 x
n Converge Uniformalley to 1

1−x on [−a, a] for any a ∈ (0, 1)
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Example

∞∑
n=1

xn

n!

First we have Dc = R, set

Um(x) =

∣∣∣∣xn

n!

∣∣∣∣ = |x|n

n!

Un+1(x)

Un(x)
=

|x|
n+ 1

→ 0 as n → ∞ ∀x ∈ R

By d’almbert criterion
∑ ∣∣xn

n!

∣∣ CV ∀x ∈ R, we deduce
∑∞

n=1
xn

n! for all x ∈ R, so
Dc = R,

∥S − Sm∥ = sup
x∈[−a,a]

∣∣∣∣∣
∞∑

n=m+1

xn

n!

∣∣∣∣∣
= sup

x∈[−a,a]

∞∑
n=m+1

|x|n

n!
≤

∞∑
n=m+1

|a|n

n!
= |S(|a|)− Sm(|a|)| → 0,m → ∞

∞∑
n=1

1

nx
Dc = (1,∞)

Let us show that it converges uniformalley on [a,∞) with a > 1

∥S − Sm∥ = sup
x∈[a,∞)

∣∣∣∣∣
∞∑

n=m+1

1

nx

∣∣∣∣∣ = sup
x∈[a,∞)

∞∑
n=m+1

1

nx

= sup
x∈[a,∞)

∑
exp(−x lnn) ≤

∞∑
n=m+1

exp(−a lnn) =

∞∑
n=m+1

1

na

= |S(a)− Sm(a)| → 0 as n → ∞

So
∑∞

n=1
1
nx CV uniformaley on [a,∞).

Definition 3.2.2

We say that the series
∑∞

n=1(fn) converges normally on I, if

∞∑
n=1

∥(fn)∥ CV

Corollary 3.2.2

Let
∑

(fn) be a series of function, then we have :

∞∑
n=1

(fn) CV Normally I =⇒
∞∑

n=1

(fn) CV Uniformally on I
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Proof. For any m, p ∈ N, we have

∥
m+p∑

n=m+1

(fn)∥ = sup
x∈I

∣∣∣∣∣
m+p∑

n=m+1

fn(x)

∣∣∣∣∣ ≤ sup
x∈I

(
m+p∑

n=m+1

|fn(x)|

)

≤
m+p∑

n=m+1

sup
x∈I

|fnx| =
m+p∑

n=m+1

∥fn∥

∞∑
n=1

∥(fn)∥ CV =⇒

{
∀ε > 0, ∃mε ∈ N, ∀m, p ∈ N
m ≥ mε =⇒ ∥

∑m+p
n=m+1 fn∥ ≤

∑m+p
n=m+1 ∥fn∥ ≤ ε

=⇒
∞∑

n=1

fn CV Uniform on I

Remark. The inverse implication is not true, For instance

fn(x) =

{
1
n x = 1

n

0 if not
on [0,∞)

∞∑
n=1

∥fn∥ =

∞∑
n=1

1

n
DIV

But ∥S − Sm∥ = sup
x∈[0,∞)

∣∣∣∣∣
∞∑

n=m+1

fn(x)

∣∣∣∣∣ =
{
0 if x ̸= 1

k k ≥ m+ 1
1
k if x = 1

k k ≥ m+ 1

=
1

m+ 1
→ ∞ as m → ∞

Example

Consider the series
∑∞

n=1
1

n2+x2 x ∈ R

fn(x) =
1

n2 + x2
∥fn∥ =

1

n2

∑
n≥1

1

n2
CV =⇒

∑
n≥1

∥fn∥ CV =⇒
∑
n≥1

fn CV uniform in R

3.3 Abel’s Criterion for the uniform convergence

Theorem 3.3.1

Let (fn)n∈N and (gn)n∈N be two sequences of functions such that

1. ∃M > 0 such that ∥FM∥ ≤ M ∀m ∈ N Where Fm(x) =
∑m

n=1 fn(x)

2.
∑

∥gn+1 − gn∥ CV

3. limn→∞ ∥gn∥ = 0

Then
∑∞

n=1 fngn CV uniformaley on I
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Example

1.
∑∞

n=1
(−1)n

n2 Dc = (0,∞) The series converge uniformaley on any interval
of the form [a,∞) with a > 0

fn(x) = (−1)n gn(x) =
1

nx
= exp (−x lnn)

∥
m∑

n=1

fn∥ ≤ 1 lim
n→∞

∥gn∥ =
1

nα
→ 0

∥gn+1 − gn∥ = sup
x≥1

(gn+1 − gn) = sup
x≥1

(
1

nx
− 1

(n+ 1)x

)
= sup

x≥1

1

nx

(
1− 1(

1− 1
n

)x
)

= sup
x≥1

1

nx
(1− exp (−x lnn))

≤ sup
x≥a

x

n(x+1)
=

a

na + 1

Since a+ 1 > 1 so
∑∞

n=1 ∥gn+1 − gn∥ Converge.

2.
∑∞

n=1
sin (nx)

n on [π/6, π/2] :

fn(x) = sin (nx) gn(x) =
1

n

lim
n→∞

∥gn∥ = 0

∥gn+1 − gn∥ = ∥ 1

n+ 1
− 1

n
∥ ∼ 1

n2

so
∑∞

n=1 ∥gn+1 − gn∥ CV∣∣∣∣∣
m∑

n=1

sin (nx)

∣∣∣∣∣ =
∣∣∣∣∣Im

(
m∑

n=0

einx

)∣∣∣∣∣ =
∣∣∣∣∣Im

(
m∑

n=0

(eix)n

)∣∣∣∣∣
=

∣∣∣∣Im(1− ei(n+1)x

1− eix

)∣∣∣∣
≤
∣∣∣∣1− ei(n+1)x

1− eix

∣∣∣∣ ≤ 1 +
∣∣ei(n+1)x

∣∣
1− eix

=
2√

2(1− cosx)∑∞
n=1

sin (nx)
n CVU on [π/6, π/2]

3.4 Properties of the uniform convergence

In all this section we let (fn)n∈N be a sequence of functions in F(I,R)

Theorem 3.4.1

Suppose that
∑∞

n=1 fn uniformally converge and (fn)n∈N is continuous on I for
all n ≥ 1 , then

∑∞
n=1 fn is continuous on I

Proof. Let Sm =
∑m

n=1 fn∑∞
n=1 fn CVU on I ⇐⇒ (Sm)m∈N CVU on I
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Since (fn)n∈N is continuous on I ∀n ≥ 1, we have (Sm) is continuous on I for all n ∈ N,
By Corollary 3.5 of chapter sequences of functions, we have :

S =

∞∑
n=1

fn is continuous on I

Remark. If
∑∞

n=1 fn UCV on I, and limx→a fn(x) = ln ∈ R, with a ∈ I, then :

lim
x→a

∞∑
n=1

fn(x) =

∞∑
n=1

lim
x→a

fn(x)

Theorem 3.4.2

If for all n ∈ N, fn is integrable on [a, b] ⊂ I, and
∑∞

n=1 fn UCV on [a, b], then∑∞
n=1 fn is integrable on [a, b] and we have∫ b

a

( ∞∑
n=1

fn(t)

)
dt =

∞∑
n=1

∫ b

a

(fn(t)) dt

Example

Consider the series
∑∞

n=1(−1)nxn, I = [0, 1]
We apply abel’s criterion :

fn = (−1)n ∥
m∑

n=1

fn∥ ≤ 1 ∀m ∈ N

gn(x) =
xn

n
∥gn∥ =

1

n
→ ∞

∥gn+1 − gn∥ = sup
x∈[0,1]

∣∣∣∣xn

n
− xn+1

n+ 1

∣∣∣∣ = sup
x∈[0,1]

xn

∣∣∣∣ 1n − x

n+ 1

∣∣∣∣
≤ sup

x∈[0,1]

(
1

n
− x

n+ 1

)
= sup

x∈[0,1]

∣∣∣∣n(1− x) + 1

n(n+ 1)

∣∣∣∣ ≤ 1

n(n+ 1)
∼ 1

n2

∑∞
n=1 ∥gn+1 − gn∥ CV∫ 1

0

( ∞∑
n=1

(−1)n

n
xn

)
dx =

∞∑
n=1

(∫ 1

0

(−1)n

n
xn

)
dx

=

∞∑
n=1

(−1)n

n(n+ 1)

Theorem 3.4.3 Differentiability

Suppose that (fn)n∈N is continuously diffirentiable on [a, b] ⊂ I, for all n ≥ 1
and

∑∞
n=1 fn(x) converge for some x0 ∈ [a, b], if

∑∞
n=1 f

′
n UCV on [a, b], then∑∞

n=1 fn UCV and it’s sum is continuously diffirentiable on [a, b], and we have :( ∞∑
n=1

fn

)′

=

∞∑
n=1

f ′
n
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Example

1.
∞∑

n=0

xn

n!
= 1 +

∞∑
n=1

xn

n∑∞
n=0

xn

n! UCV on [−a, a] ∀a > 0.

∞∑
n=0

sup
x∈[−a,a]

xn

n!
=
∑ an

n!
CV

f ′
n(x) =

xn−1

(n−1)! if n ≥ 1, f ′
1(x) = 1′ = 0

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
CV Normally on [−a, a]

∞∑
n=1

xn+1

(n+ 1)!
=

∞∑
n=0

xn

n!
CVU on [−a, a]

Therefore,
∑∞

n=0
xn

n! = ex

2. S(x) =
∑∞

n=1(−1)n x2n

(2n)! , Dc = R Use d’Almbert

S′(x) =

∞∑
n=1

(−1)n
x2n−1

(2n− 1)!

S′′(x) =

∞∑
n=1

(−1)n

(2n− 2)!
x2n−2 =

∞∑
n=1

(−1)n+1 x2n

(2n)!
= −S(x)

y′′ + y = 0

S(x) = y(x) = A cos (x) +B sinx

S(0) = 1 y(0) = A =⇒ A = 1

S′(0) = 0 y′(0) = −A sin (x) +B cos (x) =⇒ B = 0

Hence S(x) = cosx

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
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3.5 Abel’s Criterion for the uniform convergence

Example∑∞
n=1

(−1)n

nx CVU on [a,∞) for a > 0.

∥ 1

nx
∥ =

1

na
→ 0

∣∣∣∣∣
∞∑

n=1

(−1)n

fn

∣∣∣∣∣ < 1

∞∑
n=1

∥gn − gn+1∥ =

∞∑
n=1

sup
x∈[a,∞)

(
1

nx
− 1

(n+ 1)x

)
1

nx
− 1

(n+ 1)x
=

1

nx

(
1− 1

(1 + n)x

)
=

1

nx
=

1

nx
=

1

nx

(
1− exp

(
−x ln

(
1− 1

n

)))
For 0 < a < 1 < b

∥gn − gn+1∥ ≤ max

(
sup

x∈[a,b]

(
1

nx
− 1

(n+ 1)x

)
, sup
x∈[b,∞)

(
1

nx
− 1

(n+ 1)x

) )

sup
x∈[a,b]

1

nx

(
1− 1(

1 + 1
n

)x
)

≤ 1

na

(
1− exp

(
−b ln

(
1 +

1

n

)))
∼ 1

na

b

n
=

b

na+1

sup
x∈[b,∞)

( something ) ≤ 1

nb

∞∑
n=1

b

na+1
CV a+ 1 > 0

∞∑
n=1

1

nb
CV b > 1

CHAPTER 3. SERIES OF FUNCTIONS



Chapter 4

Power Series

4.1 Basic facts of complex analysis

Let a ∈ C and r in [0,∞]
The open disk center at a of radius r, the set D(a, r) defined by

D(a, r) = {z ∈ C : |z − a| < r}

The closed disk centered at a of radius r is the set D(a, r) defined by

D(a, r) = {z ∈ C : |z − a| ≤ r}

If r = ∞, then D(a,∞) = D(a,∞) = C
Let (zn)n∈N be a sequence of complex numbers, we say that (zn)n∈N converges to l ∈ C
and we write limn→∞ zn = l, if

∀ε > 0 ∀n ∈ N s.t. n ≥ N =⇒ |zn − l| ≤ ε

We say (zn)n∈N is a cauchy sequence if for all

∀ε > 0 ∃n ∈ N s.t. ∀n,m ∈ N m,n ≥ N =⇒ |zm − zn| ≤ ε

Since for any z = x+ iy, we have max (|x| , |y|) ≤ |z| =
√
x2 + y2 ≤ |x|+ |y| we conclude

that zn = xn + iyn is of cauchy if and only if (xn)n∈N and (yn)n∈N are cauchy.

Therefore, (zn)n∈N is of cauchy ⇐⇒ (zn)n∈N is convergent

Let Ω be a open set in C and let f : Ω −→ C be function, and let a ∈ Ω adherence, the
function f is said to

1. Have a limit

lim
z→a

f(x) = l ⇐⇒ ∀ε > 0 ∃δ > 0 s.t. ∀z ∈ Ω =⇒ 0 < |z − a| ≤ δ =⇒ |f(z)− l| ≤ ε

2. Be a continuous at a if ∃r > 0 such that D(a, r) ⊂ Ω and limz→a f(z) = f(a)

3. Be continuous on Ω, if its continuous at every point Ω

4. Differentiable at a if has derivative equals to f ′(a), if ∃r > 0 such that

D ⊂ Ω and f ′(a) = lim
z→a

f(z)− f(a)

z − a

5. Differentiable on Ω (Holomorph) if it’s at every point of Ω

35



2024-11-03 Lecture 12: Some Convergence Definitions

6. Have a primitive on Ω if ∃F : Ω → C such that F ′(z) = f(z)

7. Be of class Ck on Ω, if for all i ∈ {0, 1, . . . , (k − 1)} f (i) is differentiable and

f (i+1) =
(
f (i)
)′

and f (k) is continuous on Ω, we write f ∈ Ck(Ω)

8. Be C∞ on Ω if f ∈
⋂

k≥0 Ck(Ω)

Example

f(z) = zn n ∈ N f ′(z) = nzn−1

Remark. You will see, that if f is holomorph on Ω then f is C∞ on Ω

4.2 Power Series

Definition 4.2.1

We call a power series centered at z0 any series of functions, having the form∑∞
n=1 an(z − z0)

n, where (an) is a sequence of complex numbers, and for all
n ∈ N, an is the coefficient of order n

Example

1. All polynomials functions are power series

2. The geometric series
∑∞

n=1 z
n is a power series.

Theorem 4.2.1 First Abel’s lemma

Let
∑∞

n=1 an(z − z0)
n be a power series and let z1 ∈ C, if

∑∞
n=1 an(z1 − z0)

n

converges, then
∑∞

n=1 an(z− z0)
n converges absolutely for all z ∈ D(z0, |z1 − z0|)

Proof.

∞∑
n=1

an(z − z0)
n =⇒ lim

n→∞
an(z1 − z0)

n = 0

=⇒ ∃M > 0 s.t. |an(z1 − z0)
n| ≤ M ∀n ∈ N

For z ∈ D(z0, |z1 − z0|), we have |z − z0| < |z1 − z0|, then

∞∑
n=1

|an(z − z0)
n| =

∞∑
n=1

|an| |z1 − z0|n
(

|z − z0|
|z1 − z0|

)n

≤ M

∞∑
n=1

(
|z − z0|
z1 − z0

)n

CV

Corollary 4.2.2

Let
∑∞

n=1 an(z − z0)
n be a power series and let z1 ∈ C, if

∑∞
n=1 an(z1 − z0)

n

diverges, then
∑∞

n=1 an(z− z0)
n diverges for all z ∈ {α ∈ R : |z − z0| > |z1 − z0|}

Proof. If
∑∞

n=1 an(z − z0)
n CV for some z = z2 ∈ C with |z − z0| > |z1 − z0|, then

from above
∑∞

n=1 an(z − z0)
n CV ∀z ∈ D(z0, |z2 − z0|), this is impossible since z1 ∈

D(z0, |z2 − z0|)
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Theorem 4.2.3

Let
∑∞

n=1 an(z − z0)
n, be a power series and let R > 0, such that the series

converges for all z ∈ D(z0, R), then for all r ∈ (0, R) the series converges normally
in the disk D(z0, r)

Proof. For all z ∈ D(z0, r), we have

∞∑
n=1

(
sup

z∈D(z0,r)

|an(z − z0)
n|

)
≤

∞∑
n=1

|an| |z2 − z0|n CV

where z2 ∈ C, with r < |z2 − z0| = R1 < R2

Definition 4.2.2

Let
∑∞

n=1 an(z − z0)
n be a power series, and let DC denotes it’s domain of con-

vergence, we call radius of convergence of the series
∑∞

n=1 an(z − z0)
n,

R =

{
supD∗ if D∗ is bounded

∞ if not

Where D∗ = {|z − z0| , z ∈ Dc}, where Dc = {z ∈ C :
∑∞

n=1 an(z − z0)
n CV }

Remark. The disk D(z0, R) is called the open disk of convergence

Example

1.
∑∞

n=1 z
n Dc = D(0, 1) = {z ∈ C : |z| < 1} ,R = sup {|z| : z ∈ D(0, 1)} =

1

2.
∑∞

n=1
zn

n! Dc = C =⇒ R = ∞

Remark. If R is the radius of convergence of the series
∑∞

n=1 an(z − z0)
n, we

haven’t Dc = D(z0,R)

Example

1.
∑∞

n=1
xn

n2 , set Un(x) =
∣∣xn

n2

∣∣ = |x|n
n2

Un+1(x)

Un(x)
= |x|

(
n

n+ 1

)2

→ |x|

• if |x| < 1, then
∑∞

n=1
xn

n2 CV (D’Almbert)

• if |x| = 1,
∑∞

n=1
xn

n2 =
∑∞

n=1 = 1
n2 ,
∑∞

n=1
(−1)n

n2 which converges.

• if |x > 1| , limn→∞
xn

n2 = ∞ =⇒
∑∞

n=1
xn

n2 DIV

• if x < −1, limn→∞
x2n

4n2 = ∞ =⇒
∑∞

n=1
xn

n2 DIV

Domain of convergence Dc = [−1, 1] and R = 1 which is the sup of the
Dc, Note : Radius of convergence excludes the boundarys!, check definition
again.
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Theorem 4.2.4

Let
∑∞

n=1 an(z − z0)
n be a power series having R as a radiuos of convergence,

the following assertion holds

• R = 0 ⇐⇒ D = {z0}

• R = ∞ ⇐⇒ D = C

• R ∈ (0,∞), then :{
|z − z0| < R =⇒

∑∞
n=1 |an(z − z0)

n| CV

|z − z0| > R =⇒
∑∞

n=1 an(z − z0)
n DIV

Proof. 1.
Dc = {z0} =⇒ R = 0

R = 0 =⇒ Dc = {z0}

Indeed if there is z1 ̸= z0 such that
∑∞

n=1 an(z−z0)
n CV, then by above Theorem

4.1.3
∞∑

n=1

an(z − z0)
n CV ∀z ∈ D(z0, |z1 − z0|)

Hence D(z0, |z1 − z0|) ⊂ Dc and 0 = R > |z1 − z0| > 0, Contradiction.

2.
Dc = C =⇒ R = ∞ is clear

If R = ∞, then Dc = C, if there is a point z ∈ C, such that
∑∞

n=1 an(z1 − z0)
n

DIV, then by Corollary 4.1.4,
∑∞

n=1 an(z− z0)
n DIV for all z ∈ C, with |z − z0| >

|z1 − z0| this implies that Dc ⊂ D(z0, |z1 − z0|), this contradicts the fact that
R = ∞

3. R ∈ (0,∞), let a ∈ D(z0,R), we have |a− z0| < R, there is b ∈ C such that

z0

a

R

Figure 4.1: draw

|a− z0| < |b− z0| < R and
∑∞

n=1 an(b− z0)
n CV

By Theorem 4.1.3,
∑∞

n=1 an(z − z0)
n CV for all z ∈ D(z0, |b− z0|) since a ∈

D(z0, |b− z0|), the series
∑∞

n=1 |an(a− z0)
n| CV.

( ⇐= ) Let a ∈ C, such that |a− z0| > R, if
∑∞

n=1 an(z − z0)
n CV then (By

Theorem 4.1.3), we have
∑∞

n=1 an(z − z0)
n CV, for all z ∈ D(z0, |a− z0|) with

|a− z0| > R, Contradiction!, with the definition of R.
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Theorem 4.2.5

Let
∑∞

n=1 an(z− z0)
n be a power series with a radius of convergence equal to R,

Let

Ω1 =
{
|z − z0| : (an(z − z0)

n)n≥0 is Bounded
}

Ω2 =
{
|z − z0| : (an(z − z0)

n)n≥0 is Unbounded
}

Then either R = ∞ or Ω1 is upper bounded, and Ω2 is lower bounded and we
have

R = supΩ1 = inf Ω2
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