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Chapter 1

Numerical Series

1.1 Series Definitions :

Definition 1.1.1

Let Uy,en be a sequence of real numbers or complex numbers, we call a series of
general term (U,) The infinite sum of ) -, U,, The sequence associated with

the series Y, <, Uy (Sp)m>1, where for any n € N, S, = > | U, is called the
sequence of partial sums

Remark. The sum above begin by u;, but we often begin with wug, us.

Example

Some of the classical series:

e >, -5, & € R Riemanian series (Harmonic).
© > .51 7=(Inn)?, a, 8 € R Bertrand series.

® > 04" q € R Geometric series.

® D > sinmB) and dons1 cos(nB) '\, B € R Abel series.

ne ne

Definition 1.1.2

Let (U,) be a sequence of real numbers ( or complex numbers), and let (S, )m>1
be the associated sequence of partial sums.
The series ), -, Uy, is said to be :

e Convergent : if the sequence (S,,) is convergent, in this case
S = lim,,_, Sy is called the sum of series ) ., Uy, and we write

SE an U,.
Moreover, the series R, = S — S, = Zfbo:m 41 U, is called the rest of order
m of the series > -, U,.

e Divergent : if > ., U, is not convergent.

The nature of a series is the fact that it converge or diverges. Two series are said
to have the same nature if they both converge or both diverge.
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Example

Let ¢ € R and consider the series : >~ - ¢" =1+q+ P+ +

1—g"tt .
szzqn: lq_q lfq#l
m+1 ifg=1

n>0
oo ifg>1
lim ¢" =<1 ifg=1
n—oo
0 ifqge(-1,1)
00 ifg>1
nl;rr;o S = 1%(1 ifge(-1,1)

Indefined if ¢ < —1

Remark.
> q"CV = qe(-1,1)

n>0

Theorem 1.1.1

Let > .-, Uy and ), -, V;, be two numerical series then :

> Upand Y Vo, CV = > U, +V, CV

n>1 n>1 n>1
> U, CV = Y MV, CVVAeR(A€C)
n>1 n>1
Zvn CV and Zvn DIV — ZUnJrVn DIV
n>1 n>1 n>1

Theorem 1.1.2 (Necessary Conditions)

Let >, <, Uy, be a series then we have

> U, CV = lim U, =0

n—oo

Proof. Let S, be the associated sequence of partial sums, we have

Sn - Snfl = Un

Y U, CV = (8,) CV = lim

n—oo

Un = lim (Sn — Sn—l) =0
n—00

n=1

CHAPTER 1. NUMERICAL SERIES
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Remark.
In practice we use the contra positive that is :

if lim U, #0 = E U, DIV
n— o0
n>1

The inverse Implication is false

lim U, =0 = ZUn [0\Y%

n—oo

For instance :

1 1
1' —_ = —_ =
nl_rgon 0 But E - 00
n>1

Example
® > .>psin(n) DIV since lim,,_, sin(n) doesn’t exist

° ano nL_H DIV, since the lim,, nL_H =1+#0

O ano et = ZnZO (é)n = eil

Theorem 1.1.3 (Cauchy Sequence)

Let >, -, Un be a series

> U, CV

n>1

Ve>0:dn. e N:Vn,pe N
<e

m>p>n, = ‘ZT:pUn

Proof. Let (Sk)r>1 be the sequence of partial sums associated with > -, U, :

ZU” CcV = (Sk)k21 Ccv

n=1

<= (Sk)r>1 is a cauchy sequence

Ve >0:3dn. e Nst. :Vm,peN
m>p>ne|Sm—Spl =3, Un— 30 Un| <€

Corollary 1.1.4

Let 3,5, Un be a series and let p € N

YU CV = ) U, CV

nz1 n>p

Proof. Let (Up,)m>1 and let (V;,)m>1 be respectively the sequences of the partial sums

CHAPTER 1. NUMERICAL SERIES
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of 07, un and Zzozp Uy, for m > q:

‘Um+q —Unl| = |Vn+q = Vil

m+q m+q
D un|=| X un
n=q+1 n=m-+1

SO | Umtq — Ul <e = [Vintq— Vil <€

O
Theorem 1.1.5 (Telescopic series)
Let (U,) be a sequence of real numbers, then the series > -, (Un+1 — Uy) and
the sequencehave the same nature moreover, if (U,,) converge and has [ as a limit
then :
Z(Un+1 - Un) == Ul
n>1
Proof. Let (S,) be the sequence of the partial sums of ZZOZI Up+1 — U, we have:
Sn = Z(Un-i-l - Un) = (Un+1 - Un) + (Un - Un—l)--~ = Un+1 — Ul
n=1
That shows that U, and S,, have the same nature. O

1.2 Positive series

Definition 1.2.1

Let > >° , U, be a series >~ Uy, is said to be positive, if there exist ny € N
such that U,, > 0 for all n > 0.

Example
oo
—1)" -3 3
Z ()i is a positive series although ug = —2,u1 = —=,us =0
n3+1 2

U, >0, Vn >4

Theorem 1.2.1

Let 220:1 U, be a positive series and let (Sy,)m>1 be the corresponding series of
partial sums then

Z U, CV <= (Spn)m>1 is upper bounded

n=1

Proof.
Z U, CV <— (Sp)m>1 CV <= (S,,) is upper bounded S, is increasing

n=1

Indeed S;11 — S = Uppy1 >0 O]

CHAPTER 1. NUMERICAL SERIES
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Theorem 1.2.2

Is a theoritical result, its used to prove a theoritical excerices
Some classical series have the form

> ) ( > @)= ;)

The following result provide a suggicient condition for the convergence of such
type of series.

Theorem 1.2.3 (Comparison with an integral)

Let f:[1,00) — R™ be a nonincreasing continious function, then :
e >, f(n)CV — floo f(z)dz CV

/oo f)z < Ru= 3 fla)< /oo f@)dz VmeN
m+1 n=m-+1 m

Proof. »
f(n—|—1)</ f(z)dz < f(n),Vn e N
m+1 m n+1 m m n
[ t@a=3 [ f@de<sa =3 s < s+ 3 [ sy
n=1v" n=1 n=2v""

CHAPTER 1. NUMERICAL SERIES
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Example

e Rieman Series : Y~ -L aeR

Let f: [1,00) = [0,00) with f(z) = L
f is non increasing <= a >0
—a=0 f(z) = > f(n) DIV.
— o < 0 in this case lim,, o f(n) #0 = > f(n) DIV.

— a > 0 In this case f is decreasing

if(n)CV <:>/100xladm<:>a>1
n=1
— Conclusion : -
Z ia a>1
e Bertrand series : _
@) = 2 7+ 12,00) = (0,0)

f is non decreasing <= a>0and a=0and <0
lim f(n)=0 <= a>0ora=0and >0

n—
Zf CV <:>/ 1 <~ a>lora=1land 8 >1
(Inz)s
— Conclusion :
= 1
Y ———CV < a>lora=landf>1
“— n*(Inn)?

Theorem 1.2.4 (Comparison by inequality)

Let Y02, U, and Y2 | V,, be two positive series and suppose that there exist
no € N such that
U, <V, Vn > ng

then

ch :>ZU cv

n=1

ZUn DIV — Zvn DIV

fo=il n=1

Proof. Let (S,,) and o, be the sequences of partial sums associated with respectively

CHAPTER 1. NUMERICAL SERIES
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S Uy and Y00 V.

n=no n=no

ZVn CV «— Z CV <= (0m)m>n, is upper bound
n=1

n=no

= (Sm)m>n, is upper bound

<— iUnCV

n=no

<— iUn

CVv
n=1
Example
O ZZ‘LO n%&-l .
n21—l— 1 % and nZ::l % Cv
=~ 1

* > oo e

Corollary 1.2.5 (Comparison by inequalities)

a>0and b > 0 ng € N such that

agigbyvnzno

n

Proof. we have

SErov = et ov

then the series Y.~ , U, and Y.~ , V;, have the same nature.

aVp, < U, <bV,,Vn > ng

we conclude by appliying theorem 1.2.4.

Corollary 1.2.6 (Comparison by equivalence)

Proof. Uy ~og Vi = lim,o0 &2 =1

Let >°0° U, and ) .2 | V,, be two positive series, then :

Let Y02, U, and Y_.° | V,, be two positive series and suppose that there exist

U, ~s V,, — Z U,, and Z V,, have the same nature.

Let &g chosen in (0,1), by the definition of the limit there is ng € N such that

Uy,
O<l*€0§?§l+€0

n

By the Carrolary 1.2.5, -2 U, and ) .- | V,, have the same nature

CHAPTER 1. NUMERICAL SERIES
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Example

e > sin(1) DIV

1 1 =1
in(—) ~o — and — DIV
sm(n) - an Zn

n=1

A Zzozl n+sin(n)+1 vV

n3

Corollary 1.2.7 (Riemann Criterion)

Let > °, U, be a positive series, and suppose there is @ € R such that
lim,, oo n*U,, = then :

e If 1 € [0,00), and a > 1, then > > U, CV
e If / € (0,00) or l = 0o and a < 1, then } 2, U,, DIV.

Remark. (Reminders)

U, CV <= (S,,) Bounded

1

e ()P (a>1lor(a=1,5>1)

Theorem 1.2.8 (Logarithmic Comparison)

Let 23:;1 U, and ZZO=1 V,, be two positive series and suppose that there is ng € N

such that :

U V,
n+1 S n+1 n > ng
U Ve

then
i V, CV = i U, CV
n=1 n=1

iUn DIV — iVn DIV

n=1 n=1

Proof. For n > ny :

Un Un Un—l Uno+1 < Vn . Vn—l V7L0+1 Vn

Uno Unfl ' Un72 Uno — Vaa Vn72 o Vng Vno

U,
< 0
=>Un_<v )Vn

no

Conclusion follows from thoerem 1.2.4. O

CHAPTER 1. NUMERICAL SERIES
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Theorem 1.2.9 (D’almbert criterion)

Let 77, U, be a positive series such that :

U,
lim —FL —y

n—o0 n

Then :
<1 = > ,U,CV
I>1 = >, U, DIV

Proof. e Suppose [ >1, lete>0st :l—e>1, set V;, =(l—¢&)"

Un
‘ U:l l‘ <e
Un

— l—e< LRy

Vn+1 Un+1

< — <

v, U, +e

= V,, DIV

since Yt = |2 > 1 V,, DIV, and from theorem 1.2.8, it gives that > U,, DIV.
Vo ) ’ ’ g

e Suppose now that [ < 1 and let € > 0 be such that [ +¢ < 1, set V;, = (I +¢)", we
know that | V;,| Converges, for such a real £ > 0, there exist a natural numbers
dng € N such that :

l—e< Uni1 <l+4e= Vo1
U, n
Conclusion follows from theorem 1.2.8
O
Example
Yoo, g, ==t
U1 _ (D! n™ " n \"
Uo (n+1)* ! (n+1)n \n+1

1\" 1
= (1 = ) —-<1
n e
So by d’almbert criterion : > U, CV.

Theorem 1.2.10 (Cauchy Criterion)

Let 7, U, be a positive series and suppose that :

lim {/U,, =1 then :

n—r oo

<1l = iUnCV

n=1

[>1 = iUnDIV

n=1

CHAPTER 1. NUMERICAL SERIES
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Proof. For arbitrary € > 0, there is ng € N such that :

\"/Unfl’<s
= l-ece< YU, <l+e¢
= (l—-e)"<U, < (+e)"

We conclude by theorem 1.2.4.

1>1 l-e>1 = > U, DIV
I <1 (andlet e besuch that ) l—e<1 = > U, CV
O
Example
[ele] 1 n?
Zn:1ﬁ(1+%) ? acR
1 n
VU, = — (1 + ﬂ) —oo €7
nn n
ifa<l > U, DIV
ifa>1 > U, CV
Corollary 1.2.11 (Comments)
Let anl U,, be a positive series, then
lim 2%y s Em YO, =1
n—oo n n—oo "
(Ratio Test ) = (Root Test)
Proof. Indeed, for € > 0,3dng € N s.t :
Un
l—e< 22 ciqe
n
for n large enough :
_ Uny1 Ung+1 _
1— &) no+1 < n+ . no+ < (] n—ng+1
eyt < L St < (1
n—no+1 Un+1 n—no+1
(l*€) 0 ST §(l*€) 0
(1—&)" ™ Uy < Upyr < (L—g)" U,
n—n 1 _ —1_ n—ng+1 1
(1— o) ULT < U < (1—) ¥ U
= |l—e¢< lim /U, < lim YU, <l+e¢
n—oo n—oo
Since ¢ is arbitrary, we conclude that :
Jin, VO = Y YT = T /U =1
This ends the proof. O

CHAPTER 1. NUMERICAL SERIES
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Remark.
e Inverse implication is not true.
— Take U, as a counter example :

Un:{21_3z n—9l :>{{L/U7—>6

ol 3+l =921 41 lim,, 00 U{}“ Doesnt exist.

o if lim,, o0 U{}“ < lorlim, 4o VU, <1 = lim, o y_ U, CV.

o if 1imn%oUg;—:1 > 1 or limy_yoo ¥/Up >1 = SV, DIV.

° limnﬁm% = lim,,—s 00 (sup {U(‘]—:l k> n})

Theorem 1.2.12 (Raabe-Duhamel)

Let >, <, Uy, be a positive series such that :

" l 1
UU:1 =1- - + o(=) near oo

n
Where [ € R, then :

e if [ > 1, then the series }_, -, U, CV.

e if [ <1, then the series ), -, U, DIV.

Proof. Consider the case [ > 1, and let « € (1,1), and let V;, = nLa

Vot n * 1\ ¢ « 1
V, (n—l—l) < +n) n+0(n)

near oo we have :
Vn+1_Un+1 _Z—Oz 1

v, U, - oG
This means that :
. Vn+1 Un+1 o Vn+1 Un+1
JE&”< v, U, )Tt = e

Using the logarithmic comparson, Y U,, CV.
Similarly if I < 1 we take § € (I,1) and V;, = =5 we obtain :

Va U - 1
Vi U,y 7 o)
we conclude using the same way that > U, DIV. O

CHAPTER 1. NUMERICAL SERIES
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Example

1 _ 1
L4 anlniy Un—,Ta

Up+1 n o o 1
= =il = = =
U, (n—l—l) n+o(n)

By Raabe-Duhamel criterion :

ifi>1 S U, CV
ifl<1 S U, DIV

. n!
o > Un with Un = iy tars e @ € (0,00)

U1 n+l1 14+
U (a+n+1) 1+t
1 a+1,_, 1 a+1 1
=(1+ )@ =14+ >)(1- -
1+-)1+ ) 1+ ) +o(-))
a 1
1— — —
—to()

By Raabe-Duhamel criterion :

ifi>1 S U, CV
ifl<1 S U, DIV

Theorem 1.2.13 (Gauss Theorem)

Let >, <, Uy, be a positive series and suppose that there s & > 1 and [ € R such
that :

Upi1 l 1
=] 1 —_ — —
7, - + O(na) at 0o
then :
ifl>1 Y U, CV
ifil<1l > U, DIV
Remark.

f(x)
9()

is bounded near x

Proof. Let V,, = n?U, :

Vi1 n+1\" Ups1 1 1 l 1
= = — J— 1—— N
Va ( n ) U, 1+n+0(n2) n+0(n0‘)

1+L-L 40(%) ifa>2
1+t -L 10 ifa<2
Vn—i—l_ 1 . _ .
A 1—|—O(n—ﬁ) with 8 = min(2, a)

In (Vgl) h (1 T O(nlﬁ)) = 0(1)

CHAPTER 1. NUMERICAL SERIES
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— In (V{}—:l> < % Yn>ng M >0 The series > InV,, 41 —InV,, CV.

S = vaM1 ~InV, = lim Sy,

= lim_ Y Vo -V,

= lim annH :S+IHV1 =k

n—oo
lim V1, =é*
n—oo
. . k
Conclusion : lim,,_, o n?U, =¥ = U, ~ =7 at oo,

Example

1 1
*Xiw ae=Un

By Gauss Criterion :

no

if a > 1 then > L CV
if « < 1then Y - DIV

.ZUn Un:,:v!i:; peR
HINT :

lentl pntp B n \"tP (3 1\ ~(»tp)
nH D plen | C n+1 ¢ +E

—(n+p)
> _ 67(n+p)ln(1+%)

~—

Un+1 o (7’L+1
U, (n+1

(1+

1.3 Alternating Series

~—

S|

An alternating series is a series whose general term, changes sign infinitely many times

Example

The series Y~ nsinn is an alternating series.

Definition 1.3.1

Corollary 1.3.1

If a series converges absolutely, it converges.

The series Y-, U, is said to be absolutely convergent if >~ , |U,| is convergent.

Proof. Let Y02, U, be a series converging absolutely (> -, |Uy,|) by theorem 1.1.5,

Ve >0, dn. € N, such that for all m,p € N :

m—+p
m>n, — Z |U,| <e

n=m-+1

CHAPTER 1. NUMERICAL SERIES
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m+p

But since, |77 mi1 U nem+1 |Unl, for all m > n., and for all p € N we have :

m+p

Z U, <e
n=m-41
Hence, Y 2 | U, converges. O
Example
> U,, with U,, = <5
L4 Zn:l ny W1 n nZ
cosn 1
Un = | 2 | = 5
n n

1
Since Z 2 CV = Z Oy Absolutely

o0
cosn
d Z n2 cv

n=1

(1"
¢ Lotenpmcoe

I I
[/t (D7 n/t (-1

1 1 1 1

Oonx/ﬁ nyn+(-1)" - v |14 E
)TL
0y :anﬂ oy OV

)

3

S

-3 %"

S\

Theorem 1.3.2 Leibniz

Consider the series Y2 | (—1)"ay, If (ay,) is an non increasing having lim,,_, » a, =
0, then > >° ,(—1)"a,, converges.

Proof. Let (Sp)m>1 be the sequence of partial sums associated with > (=1)"a,.

2m—+2 2m
Som+2 — Sam Z (=1)"an — Z(—l)"an
n=1 n=1

= (=1)*ag, 11 + (=1)*" a9, 10 = azmi2 — azmy1 <0

(S2m)m > 1 is non increasing.

(_1)2m+2

2m+3
Som+3 — Som+1 = aom+2 + (—1)*" a3 = a2mi2 — aamss > 0

ng+1 — ng = (—1)2m+1a2m+1 — 0( as m — OO)

Conclusion (Sa;,) and (Sa,,+1) are adjacent, therefore (S,,) converges, that is
> (=1)"a, CV. O

CHAPTER 1. NUMERICAL SERIES
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Example

E (_12) CV < a>0
n
=il

Indeed,

n

If a > 0 we have (n%) is decreasing and lim,, n%

{ fa<0 lim,e (_Bn # 0 (Does not exist)
=0

Theorem 1.3.3 (Abel’s Criterion

Let (U,)n>1 and (V;,)n>1 be two real sequences, if the following conditions are
satisfied.

¢« IM >0, [ U <M VmeN

n=1
> > Vo —Vaya| CV.
e lim, ...V, =0
Then : -
> UV, CV

n=1

Proof. For any m,p € N, Let S, = Em+p \%

n=m+1 """

m+p m—+p
n=m-+1 n=m-+1
m—+p m—+p
= Z Snvn - Z Sn—lvn
n=m-+1 n=m-+1
m—+p m+p—1
- Z SnVn - Z SnVn-i-l
n=m-+1 n=m
m+p—1
- Z Sn(vn - Vn+1) - Sme+1 + Sm+me+p
n=m-+1

m+p—1
<M ( Z |Vn - Vn+1| =+ |Vm+1‘ + |Vm+p|>
n=m-+1

Let € > 0, since lim,, o V,, =0, and > >~ | [V, — V41| CV, there is n. € N :

m+p—1 c
Z |Vn*Vn+1|§7 vmzns VPGN
n=m-41 3M

9

Hence for m > n. :

m+p—1 m+p—1
Z |Snvn| <M ( Z |Vn - Vn+1| =+ ‘Vm+1| + |VM+;D|>
n=m-+1

€ € €
< _— _— _— =
_M(3M+3M+3M) c
The proof is complete. O
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Example

e lim, ;oo V, =0 (a>0)

_ 1
(n+1)> n

and 3 - — CV (a+1 > 1), so it converges.

cosnr= R (e”””)
sinnx = 1T (ei”“’)
m m
Z cosnr| =R (Z ei”x>
n=0 n=0
m m
Z sinnx| =71 ( eim>
n=0 n=0

ieinaﬁ _ i (ezm)" _ 1 ei(m+1)x _ ’1 el _ei(m-i-l)a: +eimw _ 4 _
1—e¢i= |1 — e*=| T 1l—e®

n=0 n=0
Conclusion :

>, cosnz >, sinnz

Z and Z CV < a>0

na
n=1 n=1

n=2
(="
U — (=n" _
" (=1~ (="
\/ﬁ(1+ = ) 1+ &1
B
14z
f(m):l_ix_ =z — 2° + 23 + o(z*) near 0
7
(- 1 (-1 1
U, = —=
n 2 wm ey
f \/7

n

Z (\/1% CV by Leibneiz

o0
1 DIV

n
n=1

3 t\% cv

CHAPTER 1. NUMERICAL SERIES
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Chapter 2

Sequences of functions

2.1 Generalities

In all this chapter, we let I be an interval and we denote by F(I,R) the set of real
function defined on I.
For any bounded function f € F(I,R), the symbol ||f|| denoted the sequence of |f| on
I, that is :

A1l = supaer | f ()]

Definition 2.1.1
We call a sequence of functions any mapping N — F(I,R), usually a sequence of
functions is denoted by (fn)n>0, (gn)n>1 - -
Example
o I =10,1], fulzx)=2a"
o I=R, gn(z)=e"

Definition 2.1.2

let (fu)n>1 C F(I,R) be a sequence of functions, we say that (f,),>1 is point
wise convergent to f € F(I,R) on I, if for all x € I we have

lim fa(2) = f(2)

n—oo

Pointwise convergence defines the converges of a function in term of their values of
their domains, we say that a sequence (f,),>1 is pointwise convergent if it converges to
some functions.

18



2024-10-13 Lecture 6: Simple Definitions

Example

o (fn)n>1 defined by f,(z) =2", x€[0,1]

0if z € (0,1)
lifz=1

n—roo

lim f,(z) = {

o fulz) =% z€R
o fu(z)=1+4+e™ z€][0,00)

hmf4@={2ﬁm:0

n—oo lifz>0

Pointwise converges is the netural way to define the convergence of a seqeucnce of af
unctions? Unfortunately, this of convergence doesnt preserve certain properties of the
sequence, the following examples illustrate this situation.

Example
Let (fn)n>1, be the sequence defnied on (0,7/2) by fr(2) = 2% 57
We have |
g feE) =3
Note that for all n € N
nt
0 < ful) g = (@)

n% — (2zn —sinx
2 —( 5 )§O:>gn(x)§@,Vx€(0,z)
(nxz2 + cos x) 2 2

gp () =

For all n € N, f,, is bounded and continious, In particular, f, is intergrable on
[0,1], But f is not bounded (lim,_,o f,(2) = 00) and f is not integrable.

Example

1,2

folt) = ——, zeR, lim f,(x)= ||
/1'2 + l n— o0

For all n € N, f,, is diffirentiable at 0 but f is not diffirentiable at 0.

2.2 Uniform Convergence

In this section, we introduce the mode of convergence stronger than pointwise one, the
diffirence between the two modes is analogous to that of uniform continiouty.

CHAPTER 2. SEQUENCES OF FUNCTIONS



2024-10-17

Definition 2.2.1
Let (fn)n>1 C F(I,R) be a sequence of functions and let f € F(I,R) we say that
(fn)n is uniformaley convergent to f on I , and we write f, —Y f on I, if for all
€ > 0 there exist n. € N such that for all n € N
n>n. = |fo(z) — fa)|<e Vel

Remark. Notice that a sequence (f,),>1 C F(I,R) converges uniformalley to
f e F(I,R) if and only if

supzer |fu(x) = f(@)|=||fn—fI| >0 asn— oo

(lim supacs |fu(@) = f@)]) = T |[fa = /Il =0
Corollary 2.2.1

If a sequence of functions (fy,),>1 converges uniformally to f € F(I,R), then for
all x € I, we have lim,,_, fn(2) = f(2).

Proof. Easy.
Example
falz)=2" ze€l=]0,1]
1, ifz=1
1' fn ’ =
A, fn(a) {o, fzepy 1
Example
2z 0<z<5
fa@)={ —2c+ 1 s <z<i
0 % <z<l1
li_>m falx)=0 fr,—0 onl=][0,1]
[1fn = Ol = supsefo,) [fn(2)] = — = 0 as n — o0
So f, =Y 0

Remark. Study the uniform convergence of (f,,)nen with f,(z) = (1 + %)n on
R.

CHAPTER 2. SEQUENCES OF FUNCTIONS
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Theorem 2.2.2 (Cauchy)

let (fn)n>1 C F(I,R) be a sequence of functions, f € F(I,R).

Ve >0, dn.€eN
Vn,meN, mn>n. = ||fn—fml| e

fn=V f = {
Proof.
(=)
If f, =Y fn,then for Ve >0, 3n. € N such that ¥n € N:

n>ne = ||[fa—fl[<e
Hence for m,n > n. we have :

||fn - fm|| = SUPzer |fn($) - fm($)|
< supger (|fn = f(@)| + [fm(z) — f(2)])
< supger | fn(@) — f(@)| + supser | fm(z) — f(2)]

=||fn—f||+||fm—f\|§%+%:a

(=)
First, let € > 0, dn. € N such that Vn,m € N

n,m2>ne = |fu(2) = fm(@)| <||fn = fmll <& Vo el

This means that f,, for all z € I, (f,.(z)) is a cauchy sequence, so it converge to

some f(x).
For any € > 0, 3n, € N such that Vn, m € N.

|fn(z) — fm(z)] <e Vzel

this implies that
e > lim |fn(z) — fm(z)| absis continious so = |f,(x) — lim f,(z)
m—» 00

=|fu(z) = f(x)] Yn>n. Voel

Hence
| fn = fll = supzer [fn(2) — f(z)| <€ Vn2>mn.

That is f, =Y f on I. O

2.3 Properties of the uniform convergence

In all this section, we let (f,) C F(I,R) be a sequence of functions and f € F(I,R).

Theorem 2.3.1 (Boundedness)

Suppose that f, =Y f on I and there is ng € N such that f, is bounded on I for
all n > ng, Then f is bounded on I.

Proof. For any € > 0, dn, € N such that

VYneN,n>n. = (|fulz) — f(z)|<e Vzel)
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Let n, > max(ne,ng), then Vo € T

[f(@)] < [fn. () = F(@)] + [ fny ()]
Se+|[fn.ll

So f is bounded on I. O
Theorem 2.3.2 (Integrablity)

Suppose that f, —Y f on I and there is ng € N such that f, is integrable
( In Riemann sens ) on [a,b] C I for all n > ng. Then f is integrable on [a,b],
and we have

b

b b
lim [ fo(t)dt = / lim_f,, (t)dt = / F(t)dt

n—oo

Proof. Let € > 0, there is n. € N such that for all n > n., we have :

@) = 35—y S @) S h@)+ 5

Also, for all n > ng, there is a subdivision {xg,z1,..., 2%}

(a:x0<x1<x2<...<xk:b)

such that i
(Mo = 1) (2 = wim1) < =
i=1
We have
Mni = Supze[mi,l,zi]fn(x) Mpi = anme[zl,l,ml]fn(m)
Let

M; = Supxe[wi,l,xi]f(x) and m; = infxe[l'ifhxi]f(x)

Therefore we have :

5 5
S <M < My,
4b—a) = *

Mni -

S(f, (@) = s(f,2:) = Y (M; = my)(w; — 2i1)

i=1
" €
= My — mp; iTi—
(0= o)+ 55 i
=1
n € n
= (an - mni) ("I:’L - xzfl) + (xz "I:’L*l)
i=1 2(b—a) ;
cELf_.
-2 2

We have proved that f is integrable.

/:f(t)dt - /ab ()t
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/\n o
/ 1 — £l dt

=0b-a)llfu—fll=0
O
Corollary 2.3.3
Suppose that f,, =Y f on [a,b] C I, and Ing € N, such that f, is integrable on
[a,b] for all n > ng. Then F,, =Y F, on [a, b] where
(x) = / fa(t)dt and F(x / ()
a
Proof. For all z € [a,b] we have
F |</|n ~ F)ldr
—a)|lfu = fll
This implies :
|| = Fl| = supgefap) [Fn(z) — F(z)|
<@®-a)||fn—fll > 0asn— oo
O

Theorem 2.3.4 (Permutation of limits)

Suppose that f,, =Y f on I and there is ng € N such that lim,_,, fn(z) =1, € R
VYn > ng, where a € I, then, lim,_,, f(z) =1 € R, and we have

lim (lim f,(x)) = lim ( lim f,(z))

n—oo r—a r—a nN—oo

Proof. f, =Y f = (fn) is a Cauchy sequence.
Hence, for any € > 0, dn. € N such that Vn,m € N.

|fr(x) — fm(x)| <e VYxel Vn,m>n,
Passing to the limit, where x — a, we obtain
[l —ln| <& Vn,m>mn,

This means that (I,) is a cauchy sequence and I, — | € R. Let € > 0, there isn; € N
such that Vn > n,

fal@) = f@)| < Vo e T (fu =Y fond
Foralln >n. Fpe>0 |z—a| <dpe = |fn(z) —1] < <

Ing € N, |ln—l|§§ Vn > no

Choosing n. > maxz(ng,n1,n2), 30, >0
such that |z —a| <y, ¢
(@) = U < |f(z) = fa. (@] + [fo. (@) = la] + [ln = 1]

s, f.¢
3 3 3

IN

IN
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This shows that lim,_,, f(z) = [ in other words.

tim (Jim, 4@)) == fim to = Jim (tm, £2(0))

lim f(z) =1 Ve>0,30 >0,Vr € l,|]z—x9| <J = |f(x) — f(zo)| <€

r—a

[f (@) =] < |ful) = fu(@)] + [fnlz) =]
< [f(@) = fa@)] 4 [fa(@) = ln] + [ln =]

Remark. In Theorem 2.3.4 a can be oo or —oo.
Also, Theorem 2.3.4 holds if Ing € N such that lim,_, fn(2) = 0o or — oo, in
this case, we have lim,_,, f(z) = o0 or — 0.

Corollary 2.3.5 (Continiuty)

Suppose that f,(x) — f on I, and there is ng € N such that f,, is continious at
a, where a € I, then f is continious on a, in particular if f,, is continious on [ for
all n > ng, then f is continious on I.

Proof.

T—a Tr—a \n—o0

lim f(z) = lim ( lim fn(x))
= lim (lim fn(:zr)>

n—oo r—a

= nh_)nolo fn(a) = f(a).

Theorem 2.3.6 (Differentiability)

Suppose that there is nyg € N such that f,, is continuously differentiable on [a, b] C
I, If f/ — g uniformally on [a,b] and there is g € [a,b], such that f,(z¢)
converges, then :

(fn)n>1 is uniformally convergent on [a,b] to some function f, f is continuously
differentiable and we have f’ = g on [a, b].

Proof. For all n > ng, and we have :
x
fulo) = Fulaw) + [ oy
xo

By Corollary 2.3.3, we have :

fuoat | " g(t)dt = f(x)

Zo

with f/(z) = g(x) O
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Corollary 2.3.7

Suppose that there is ng € N such that f,, € C*([a,b]) with [a,b] C I, and k > 2.
If £¥) — g on [a,b] and there is xg € [a,b], such that (ff(f)(ato)) converge for all

i1€{0,1,...,k—1} then (ﬁ(f)) converge uniformaly Vi € {0,1,...,k — 1} to

n>1

some f € C*[a,b] and we have f*) = g.

Proof.

Fi7 @) = 18D o) + " 5 ).

0
xT

— [ LU +a+/ g(t)dt

Zo

By applying & — 1 times. O
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Chapter 3

Series of Functions

In all this chapter, we let I be a real interval and we denote by F(I,R) the set of all
real function defined on I, For f € F(I,R) with f bounded, the symbol || f| denotes
the supremum of |f| on I, that is

If1l = supzer [ f ()]

3.1 Definitions :

Definition 3.1.1

let (fn)n>1 € F(I,R) be a sequence of functions, we call the series of general
term f,, the infinite sum Y 07, fn(n>.,—, fn), the sequence (S,,)m>1 where
Sm(x) = Y| f(x) is called the sequence of partial sums associated with the

series > 7| fn, the series R,,, = > o0 41 Jn is called the rest of order m.

Example

o n . .
1LY,z Geometric series
o sinnx
2. Zn:l n

Definition 3.1.2

Let (fn)n>1 C F(I,R) be a sequence of functions and let (S,,)m>1 be the
associated sequence of partial sums, the series ), -, f, is said to be convergent
at xg € I, if the series ) -, fn(2o) converges.

in such situation if lim,_,, Sy, (z¢) = S(zo) we say that the series > > | fu(z0)
then it’s sum equal to S(z¢) and we write

S(x0) =Y fulwo)

The set

D:{er;anxcv}

ap=Il

Is called the domain of convergence of the series Y~ | fn

26
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Example
L Ype” D=(-11) S@)=;
2. Y (=1)"z® D= (-1,1) S(z)= =

3.32°,%2 D=R

n!

||l
4 = n'| nl
an+1 — |x| 0
(o35 n—+1
xn
= > —| CVvzeR
n

n>0
x’ﬂ
= ) S CVVzeR
n>0
= D=R

3.2 Uniform and Normal Convergence

In all this section, we let (f,)nen C F(I,R) be a sequence of function and let (Sy,)m>1
the sequence of partial sums associated with the series Y -, fn

Definition 3.2.1

The series of functions, fo:l fn is said to uniformally convergent on I, if the
sequence (S, )men is uniformally convergent on I.

Theorem 3.2.1 Cauchy
This series Zzozl converge uniformaly on I, if and only if

Ve >0, dn.€Nst. Vm,peN

m—+p

D i

n=m-+1

m>ne — <e

Proof. Easy!, yeah sure. O
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Example

Yoo a™ D.=(—1,1) and it’s sum

S(xz) = :ix
n=1
i 2| <m+1 VreD,

But lim,;, 00 S () = ﬁ is not bounded.
So (Sy)men does not converge uniformally on (—1,1)

1 1
Notice/ (Spm)dx CV and/ S(z)dx DIV
-1

-1

Let a € (0,1), we have :

o0

>, " “Zw
n=m-+1

m+1| m 1 a™
S 07 SUPoel-aa] T, =

SUPzec[—a,a] |S(.’E> - Smxl = SUPzec[—a,a) = SUPzc[—a,a] |T

= SUPze[—a,a] 1_ 1—a

So > ;™ Converge Uniformalley to - on [—a, a] for any a € (0,1)
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Example

n=1
First we have D, = R, set
z"| _ Jal”
Un(@ = 50| = r
Un
+1(2) = il —+0asn—+00 VreR
U, (z) n+1
By d’almbert criterion > ’%’ CV Vz € R, we deduce Y 7 | %l for all z € R, so
D, = ]Ra
o0 xn
S = Smll = sup ey
rel-aa n:Em:H n
o0 T ) o0 a n
— om B < 5 18 isap - smahi = 0,m - o0
z€[—a,a] , Z 07 e n=m-+1 s

Let us show that it converges uniformalley on [a, c0) with a > 1

— 1 — 1
S-S, = su —| = su —
: ” relaco) n:zmjﬂ ne we[agom:%l ne
o0 [e9) 1
= sup Zexp(—xlnn)g Z exp(—alnn) = Z —
z€[a,00) n=m+1 n=m-+1 n

=1S(a) — Sm(a)] > 0asn — oo

So 3% | L. CV uniformaley on [a, 00).

n=1 n=

Definition 3.2.2

We say that the series Y. | (f») converges normally on I, if

Sl eV

Corollary 3.2.2

Let > (fn) be a series of function, then we have :

Z(fn) CV Normally I = Z(f”) CV Uniformally on

n=1 n=1
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Proof. For any m,p € N, we have

m+p m+p m+p
1SS =] 5 s <o (5 o)
n=m-+1 z€ n=m-+1 zel n=m-+1
m+p m+p
< Y suplfarl= D [Ifall
n=m-+1 z€l n=m-+1

> Ve>0, Im.eN, Vm,peN
[(f)ll CV = m m
Z m>me = | S0TP <SS fal < e

= Z frn CV Uniform on [

n=1

Remark. The inverse implication is not true, For instance

xTr =

1 1
fu(x) = {8 . Z on [0, 00)

Sl =3 Iy

n=1 n=1

0 ifr#A+ E>m+1
But ||S — S| = sup Z fal@) =48 . r
16000)nm+1 % lfIZE ]{’Zm+1
1
= — 00 as m — 0o

m+1
Example
Consider the series Zn 1 7n2<1m2 zeR

1 1

1 . .
Z 2 V. = Z | fnll CV = an CV uniform in R

n>1 n>1 n>1

3.3 Abel’s Criterion for the uniform convergence
Theorem 3.3.1
Let (fn)nen and (gn)nen be two sequences of functions such that

1. 3M > 0 such that ||[Fi|| < M Vm € N Where F,,(z) = > fo(2)

2. 3 lgn+1 — gall CV

3. limy, o0 [|gnll = 0

Then Y., fngn CV uniformaley on I
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Example

LY, (;lz)n D. = (0,00) The series converge uniformaley on any interval

of the form [a, c0) with a > 0

1

falz) = (=1)" gn(z) = —5 = exp (—xzlnn)

na

1
< 1 — —
| 21 full €1 nhm llgnl >0

1 1
— = su — = su —_—
o1 = 0] =50 g1 = ) =309 (o — )
1 1 1
=sup— |1l———5 | =sup— (1l —exp(—xlnn
QfZIi n< < (1 B :L)x) xZIi ne ( p( ))
< sup -
o> @D po 41

Since a+1>150 Y 02 ||gnt1 — gnl| Converge.

2. Y200 s2(nn) o [7/6,7/2] :

n

. 1
fn(x) = sin (nx) gn(:r):ﬁ
lim ||gn|l =0

n— 00
|| = ll— =~ —
Intt Il =T T n?

50 >0 1 |gn+1 — gnll CV

m m m ]
Z sin (nz)| = |Im (Z emx> = |Im (Z(e”)") ‘
n=1 n=0 n=0
1— ei(n+1)x
()
1—ew
1— ei(nJrl)z 14+ ’ez’(n-i-l):c‘ 9
< : ] =
| 1—e® 1—ew 2(1 — cosx)

Zoo sin (nx) CVU on [7T/67 7T/2]

n=1 n

3.4 Properties of the uniform convergence

In all this section we let (fy,)nen be a sequence of functions in F(I,R)
Theorem 3.4.1

Suppose that Y > | f, uniformally converge and (f,)nen is continuous on I for
allm > 1, then Y 2 f, is continuous on I

Proof. Let Sy, => 0" fn
S £ CVUon I <= (Sp)men CVU on I
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Since (fy)nen is continuous on I Vn > 1, we have (S,,) is continuous on [ for all n € N,
By Corollary 3.5 of chapter sequences of functions, we have :

o0
S = E fn 1s continuous on [

n=1

Remark. If Y°>° f, UCV on I, and lim,_,, fn(z) =, € R, with a € I, then :
fm > e Z fim fna

Theorem 3.4.2

If for all n € N, f, is integrable on [a,b] C I, and Y.~ f,, UCV on [a,b], then
>0 | fn is integrable on [a,b] and we have

b [ oo o b
/ (Zm)) =Y [ (ult)

Example

Consider the series Y >~ (—=1)"z", I =10,1]
We apply abel’s criterion :

fa=(D" D) fall <1 VmeN

n=1
" 1
gn() = o llgnll = ~ =00
" et a1 x
v et = 2 [~ 5] = e
< sup (1_ ff >: sup n(l—x)+1'< I
zeo,)\  n+1 z€[0,1] n(n +1) n(n +1) n2

Ynet lgnt1 — gnl CV

[

==l = )e

n=1

ZnnJrl)

=]

v
| |

—

Theorem 3.4.3 Differentiability

Suppose that (f,)nen is continuously diffirentiable on [a,b] C I, for all n > 1
and Y fn(x) converge for some z¢ € [a,b], if > o2, fr UCV on [a,b], then
>0 1 fn UCV and it’s sum is continuously diffirentiable on [a, b], and we have :

<§;fn>/if;

n=1
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Example
1.
i z
S 0 L UCV on [—a,a] Va > 0.
o0 an
sup — = — CV
7;]$€[—a,a] n! Z n!
@)=y ifn> 1, filz) =1'=0
€2 -1 €2 "
Z = Z — CV Normally on [—a, a]
— (n—1)! o n!
St zn+1 St "
Z CF] = Z o CVU on [—a,d]
n=1 n=0

Therefore, } 7 (& = e”

=

2. 8(z) =301 (-1)"Gmi»  De =R Use d’Almbert

n=1

- S s
" o~ (D" s N nt1 T
8@ =2, (2(71 —)z)v =2 UGy = 5@

¥ +y=0
S(x) = y(xr) = Acos (x) + Bsinz
S0)=1 y(0)=4 = A=1
S'(0)=0 ¥'(0)=—Asin(z)+ Beos(z) = B=0

Hence S(x) = cosz

0 m2n+1
sinz = ZO<—1> @ns 1)

CHAPTER 3. SERIES OF FUNCTIONS



2024-10-31 Lecture 11: Introduction to Complex Analysis

3.5 Abel’s Criterion for the uniform convergence

Example

> CU” 0VU on [a,o0) for a > 0.

n=1 n=

1 1
||7||:7H0
n n

Dt —oml =3 mw (5~ 7ay)

n—1 *€la,00)

1 1 1 1 1 1 1 1 1—e 21n (1 1
—_———-—- = — _— = —_— = — = — — ex — _ —
n* (n+1)® n* (1+n)* n®* n® n® ® n

ForO<a<1<b
lgn — | <max| su (1 - 1) su (1 — 1)
In = Gnall = mE[(zI,)b] n* (n+1)* ’xe[bgo) n*  (n+1)*

1 1 1 1b b
—(1-—— < 1- —bIn (1+— ~—— =
() s (e (o (1)) ~ i =

sup ( something ) <
z€[b,00)

1
na
L
nb
— b

chv a+1>0

n=1

1

E—bCV b>1
n

n=1
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Power Series

4.1 Basic facts of complex analysis

Let a € C and 7 in [0, co]
The open disk center at a of radius r, the set D(a,r) defined by

D(a,r)={z€C: |z—a|<T}

The closed disk centered at a of radius r is the set D(a,r) defined by

D(a,r)={z€C: |z—a|<r}

If r = oo, then D(a,0) = D(a,0) = C
Let (zn,)nen be a sequence of complex numbers, we say that (2, )nen converges to [ € C
and we write lim,, oo 2, = [, if

Ve>0 YneNst.n>N = |z, -] <¢
We say (zn)nen is a cauchy sequence if for all
Ve>0 dneNst. VnyomeN mn>N = |z, —z,| <e¢

Since for any z = x + 14y, we have max (|z|, y|) < |z| = V2% + y? < |z|+|y| we conclude
that z, = x, + iy, is of cauchy if and only if (2, )nen and (yn)nen are cauchy.

Therefore, (2, )nen is of cauchy <= (2, )nen is convergent

Let Q be a open set in C and let f :  — C be function, and let a €  adherence, the
function f is said to

1. Have a limit

lim f(z) =1 <= Ve >0 30>0st.Vz2€eQ = 0<|z—a| <0 = |f(2) - <ce

z—a

2. Be a continuous at « if 3r > 0 such that D(a,r) C Q and lim,_,, f(2) = f(a)
3. Be continuous on ), if its continuous at every point )

4. Differentiable at a if has derivative equals to f’(a), if Ir > 0 such that

D Qand fla) = lim L2 =10

z—a zZ—a

5. Differentiable on Q (Holomorph) if it’s at every point of €
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6. Have a primitive on  if 3F : Q — C such that F'(z) = f(z)

7. Be of class C* on Q, if for all i € {0,1,...,(k—1)} f@ is differentiable and
FO+D = (f(i)) and f*) is continuous on 2, we write f € C*(Q)

8. Be C> on Qif f € ;5 CF(Q)

Example

f(z)=2" neN f(z)=nz"""

Remark. You will see, that if f is holomorph on Q then f is C* on 2

4.2 Power Series
Definition 4.2.1

We call a power series centered at zy any series of functions, having the form
o n .

Y omeq n(z — 20)", where (a,) is a sequence of complex numbers, and for all

n € N, a,, is the coefficient of order n

Example
1. All polynomials functions are power series

2. The geometric series Y-, 2" is a power series.

Theorem 4.2.1 First Abel’s lemma

n

Let >°>°  an(z — 20)™ be a power series and let 2y € C, if Y 7 an(z1 — 20)
converges, then > 7 | a,(z — z9)™ converges absolutely for all z € D(zy, |21 — 20])

Proof.

Z an(z —20)" = lim an(z1 —20)" =0
n— o0

= IM >0st. |an(z1 —20)"| <M VneN

For z € D(zo, |21 — 20|), we have |z — zg| < |21 — 20|, then

|z — 2 — (12— 20\"
3 lonts =20 = 3 leal b =" (E=2) " < a3 (B2 o

Corollary 4.2.2

Let 07 an(z — 20)™ be a power series and let z1 € C, if > 77 | an(z1 — 20)"
diverges, then Y7 | a,(z — 20)" diverges for all z € {a € R : |z — 20| > |21 — 20/}

Proof. If Y0 | an(z — 20)™ CV for some z = zo € C with |z — 29| > |21 — 20/, then
from above Y07 a,(z — 20)" CV Vz € D(zo, |22 — 20|), this is impossible since z; €
D(ZO,‘ZQ _ZOI) [
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Theorem 4.2.3

Let 7, an(z — 20)", be a power series and let R > 0, such that the series
converges for all 2 € D(zp, R), then for all 7 € (0, R) the series converges normally
in the disk D(zq, )

Proof. For all z € D(zp,r), we have

Z ( sup |an(z — zo)"|> < Z |an| |22 — 20" CV

n=1 265(2077') n=1
where zo € C, with r < |22 — 20| = R1 < R» O
Definition 4.2.2

Let " an(z — 20)" be a power series, and let Do denotes it’s domain of con-
n=1 )
N . . [eS) n
vergence, we call radius of convergence of the series >~ | an(z — 20)",

R sup D* if D* is bounded
~ ]oo ifnot

Where D* = {|z — 29|,z € D.}, where D, = {z € C: Y 7" an(z — 20)" CV }

Remark. The disk D(zg, R) is called the open disk of convergence

Example

1. 2 ,2" D.=D(0,1) ={z€C:|z| <1} ,R =sup{|z|: 2€ D(0,1)} =
1
2.3 4 D.=C = R=c

oo

n=1 CLn(Z - Z(])n7 we

Remark. If R is the radius of convergence of the series Y
haven’t D. = D(z0, R)

Example

Gt _ g (20) e

e if [z| < 1, then 3°°, 27 CV (D’Almbert)

n=1 n2

g 0o n oo 1 oo —1)" g
eiflz)[=1,3 1 == 1= 77D e ( n2) which converges.
”

o if [z > 1],lim, 400 Zy =00 = .20 27 DIV

n=1 n2

o if £ < —1,lim, 00 By =00 = 320, 25 DIV

n=1 n2
Domain of convergence D, = [—1,1] and R = 1 which is the sup of the
D., Note : Radius of convergence excludes the boundarys!, check definition
again.
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Theorem 4.2.4

Let D7 an(z — 20)" be a power series having R as a radiuos of convergence,
the following assertion holds

e R=0 < D={z}
e R=00 <= D=C
e R € (0,00), then :

|z — 20l <R = Y oo lan(z — 20)"| CV
|z — 20| >R = Y o7 an(z — 20)" DIV

Proof. 1.
D. = {Zo} = R=0
R=0—= D, = {Zo}
Indeed if there is z1 # 2o such that Y- | a,(z —z9)" CV, then by above Theorem
4.1.3

Z (z— 20)" CV Vz € D(20, |21 — 20])

n=1

Hence D(zg, |21 — 20|) C De and 0 =R > |z1 — 29| > 0, Contradiction.

D.=C — R = oo is clear

If R = oo, then D, = C, if there is a point z € C, such that > 7 | a,(z1 — 20)"
DIV, then by Corollary 4.1.4, > | a,,(z — 29)" DIV for all z € C, with |z — zo| >
|z1 — 20| this implies that D. C D(zo, |21 — 20|), this contradicts the fact that
R =00

3. R € (0,00), let a € D(29,R), we have |a — zp| < R, there is b € C such that

20

Figure 4.1: draw

la — 20| < |b— 20| <R and Y o7 an(b—20)" CV
By Theorem 4.1.3, 07 an(z — z9)" CV for all z € D(z, |b— z|) since a €
D(zo, |b — 20]), the series > 7, |an(a — z9)"| CV.
(<) Let a € C, such that |a — 29| > R, if Y7, an(z — 20)" CV then (By
Theorem 4.1.3), we have > 7 | a,(z — z)™ CV, for all z € D(zo, |a — zo|) with
la — 29| > R, Contradiction!, with the definition of R.

O
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Theorem 4.2.5

Let fo:l an(z — 20)"™ be a power series with a radius of convergence equal to R,
Let

0= {|z — 20| ¢ (an(2 = 20)")p>o 18 Bounded}

Qy = {|z — 20| : (an(z = 20)") 5 18 Unbounded}

Then either R = oo or 4 is upper bounded, and 25 is lower bounded and we
have
R =supQy =inf Qy
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