
CHAPTER 1

Fundamentals of Statistics

1.1 INTRODUCTION

In the modern world of information and communication technology, the importance

of statistics is very well recognized by all the disciplines. Statistics has originated

as a science of statehood and found applications slowly and steadily in Agriculture,

Economics, Commerce, Biology, Medicine, Industry, planning, education and so on. As

of today, there is no other human walk of life, where statistics cannot be applied.

Statistics is concerned with the scienti�c method of collecting, organizing, summariz-

ing, presenting and analyzing statistical information (data) as well as drawing valid

conclusion on the basis of such analysis. It could be simply de�ned as the "science of

data". Thus, statistics uses facts or numerical data, assembled, classi�ed and tabulated

so as to present signi�cant information about a given subject. Statistic is a science of

understanding data and making decisions in the face of randomness.
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The study of statistics is therefore essential for sound reasoning, precise judgment and

objective decision in the face of up- to- date accurate and reliable data. Thus many

researchers, educationalists, business men and government agencies at the national,

state or local levels rely on data to answer operations and programs.

In this chapter, you begin by learning �ve basic words� population, sample, variable,

parameter, and statistic (singular)� that identify the fundamental concepts of statistics.

These �ve words, and the other concepts introduced in this chapter, help you explore

and explain the statistical methods discussed in later chapters.

1.2 The First Three Words of Statistics

You�ve already learned that statistics is about analyzing things. Although numbers

was the word used to represent things in the opening of this chapter, the �rst three

words of statistics, population, sample, and variable, help you to better identify what

you analyze with statistics.

Population

CONCEPT. All the members of a group about which you want to draw a conclusion.

EXAMPLES. All DZ citizens who are currently registered to vote, all patients treated

at a particular hospital last year, the entire daily output of a cereal factory�s production

line.

Sample

CONCEPT. The part of the population selected for analysis.
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EXAMPLES. The registered voters selected to participate in a recent survey concern-

ing their intention to vote in the next election, the patients selected to �ll out a patient

satisfaction questionnaire, 100 boxes of cereal selected from a factory�s production line.

Variable

CONCEPT. A characteristic of an item or an individual that will be analyzed using

statistics.

EXAMPLES. Gender, the party a¢ liation of a registered voter, the household in-

come of the citizens who live in a speci�c geographical area, the publishing category

(hardcover, trade paperback, mass-market paperback, textbook) of a book, the number

of televisions in a household.

INTERPRETATION. All the variables taken together form the data of an analysis.

Although people often say that they are analyzing their data, they are, more precisely,

analyzing their variables. (Consistent to everyday usage, the authors use these terms

interchangeably throughout books.)

You should distinguish between a variable, such as gender, and its value for an indi-

vidual, such as male. An observation is all the values for an individual item in the

sample. For example, a survey might contain two variables, gender and age. The �rst

observation might be male, 40. The second observation might be female, 45. The third

observation might be female, 55. A variable is sometimes known as a column of data

because of the convention of entering each observation as a unique row in a table of

data. (Likewise, some people refer to an observation as a row of data.)

Variables can be divided into the following types:
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Categorical Variables Numerical Variables

Concept The values of these variables are se-

lected from an established list of cat-

egories.

The values of these variables involve

a counted or measured value.

Subtypes Nominal scale is a naming scale,

where variables are simply "named"

or labeled, with no speci�c order.

Ordinal scale has all its variables in

a speci�c order, beyond just naming

them.

Discrete. values are counts of things.

Continuous. values are measures

and any value can theoretically oc-

cur, limited only by the precision of

the measuring process.

Examples Gender, a variable that has the

categories �male� and �female.�

Academic major, a variable that

might have the categories �English,�

�Math,� �Science,� and �History,�

among others.

The number of people living in a

household, a discrete numerical vari-

able. The time it takes for someone

to commute to work, a continuous

variable.

1.3 The Fourth and Fifth Words

After you know what you are analyzing, or, using the words of the previous Section,

after you have identi�ed the variables from the population or sample under study, you

can de�ne the parameters and statistics that your analysis will determine.

Parameter

CONCEPT. A numerical measure that describes a variable (characteristic) of a pop-

ulation.
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EXAMPLES. The percentage of all registered voters who intend to vote in the next

election, the percentage of all patients who are very satis�ed with the care they received,

the mean weight of all the cereal boxes produced at a factory on a particular day.

Statistic

CONCEPT.A numerical measure that describes a variable (characteristic) of a sample

(part of a population).

EXAMPLES. The percentage of registered voters in a sample who intend to vote in

the next election, the percentage of patients in a sample who are very satis�ed with the

care they received, the mean weight of a sample of cereal boxes produced at a factory

on a particular day.

INTERPRETATION. Calculating statistics for a sample is the most common ac-

tivity because collecting population data is impractical in most actual decision-making

situations.

1.4 The Branches of Statistics

You can use parameters and statistics either to describe your variables or to reach

conclusions about your data. These two uses de�ne the two branches of statistics:

descriptive statistics and inferential statistics.

1.4.1 Descriptive Statistics

CONCEPT. The branch of statistics that focuses on collecting, summarizing, and

presenting a set of data.

EXAMPLES. The mean age of citizens who live in a certain geographical area, the
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mean length of all books about statistics, the variation in the weight of 100 boxes of

cereal selected from a factory�s production line.

INTERPRETATION. You are most likely to be familiar with this branch of statistics

because many examples arise in everyday life. Descriptive statistics serves as the basis

for analysis and discussion in �elds as diverse as securities trading, the social sciences,

government, the health sciences, and professional sports. Descriptive methods can

seem deceptively easy to apply because they are often easily accessible in calculating

and computing devices. However, this easiness does not mean that descriptive methods

are without their pitfalls, as Chapters of Presenting Data in Charts and Tables and

Descriptive Statistics explain.



CHAPTER 1. FUNDAMENTALS OF STATISTICS 7

1.4.2 Inferential Statistics

CONCEPT. The branch of statistics that analyzes sample data to reach conclusions

about a population.

EXAMPLE. A survey that sampled 1,264 women found that 45% of those polled

considered friends or family as their most trusted shopping advisers and only 7% con-

sidered advertising as their most trusted shopping adviser. By using methods discussed

in next Section, you can use these statistics to draw conclusions about the population

of all women.

INTERPRETATION. When you use inferential statistics, you start with a hypoth-

esis and look to see whether the data are consistent with that hypothesis. This deeper

level of analysis means that inferential statistical methods can be easily misapplied or

misconstrued, and that many inferential methods require a calculating or computing

device.
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1.4.3 USES OF STATISTICS

Statistics can be used among others for:

1) Planning and decision making by individuals, states, business organizations, research

institution etc.

2) Forecasting and prediction for the future based on a good model provided that its

basic assumptions are not violated.

3) Project implementation and control. This is especially useful in on-going projects

such as network analysis, construction of roads and bridges and implementation of

government programs and policies.

4) The assessment of the reliability and validity of measurements and general points

signi�cance tests including power and sample size determination.

1.5 STATISTICAL DATA

Data can be described as a mass of unprocessed information obtained frommeasurement

of counting of a characteristics or phenomenon. They are raw facts that have to be

processed in numerical form they are called quantitative data. For instance the

collection of ages of students in a particular session is an example of this data. But

when data are not presented in numerical form, they are called qualitative data. E.g.:

status, sex, religion, etc.

Dé�nition 1.5.1 Statistical data are data obtained through objective measurement or

enumeration of characteristics using the state of the art equipment that is precise and

unbiased. Such data when subjected to statistical analysis produce results with high

precision.
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1.5.1 SOURCES OF STATISTICAL DATA

1. Primary data: These are data generated by �rst hand or data obtained directly

from respondents by personal interview, questionnaire, measurements or observation.

Statistical data can be obtained from:

(i) Census �complete enumeration of all the unit of the population

(ii) Surveys �the study of representative part of a population

(iii) Experimentation � observation from experiment carried out in laboratories and

research center.

(iv) Administrative process e.g. Record of births and deaths.

ADVANTAGES

� Comprises of actual data needed

� It is more reliable with clarity

� Comprises a more detail information

DISADVANTAGES

� Cost of data collection is high

� Time consuming

� There may larger range of non response

2. Secondary data: These are data obtained from publication, newspapers, and annual

reports. They are usually summarized data used for purpose other than the intended

one. These could be obtain from the following:

(i) Publication e.g. extract from publications
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(ii) Research/Media organization

(iii) Educational institutions

ADVANTAGES

� The outcome is timely

� The information gathered more quickly

� It is less expensive to gather.

DISADVANTAGES

� Most time information are suppressed when working with secondary data

� The information may not be reliable

1.5.2 METHODS OF COLLECTION OF DATA

There are various methods we can use to collect data. The method used depends on

the problem and type of data to be collected. Some of these methods include:

1. Direct observation

2. Interviewing

3. Questionnaire

4. Abstraction from published statistics.

DIRECT OBSERVATION

Observational methods are used mostly in scienti�c enquiry where data are observed

directly from controlled experiment. It is used more in the natural sciences through

laboratory works than in social sciences. But this is very useful studying small com-

munities and institutions.
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INTERVIEWING

In this method, the person collecting the data is called the interviewer goes to ask the

person (interviewed) direct questions. The interviewer has to go to the interviewed

personally to collect the information required verbally. This makes it di¤erent from the

next method called questionnaire method.

QUESTIONNAIRE

A set of questions or statement is assembled to get information on a variable (or a set

of variable). The entire package of questions or statement is called a questionnaire.

Human beings usually are required to respond to the questions or statements on the

questionnaire. Copies of the questionnaire can be administered personally by its user

or sent to people by post. Both interviewing and questionnaire methods are used in

the social sciences where human population is mostly involved.

ABSTRACTIONS FROM THE PUBLISHED STATISTICS

These are pieces of data (information) found in published materials such as �gures

related to population or accident �gures. This method of collecting data could be

useful as preliminary to other methods.

Other methods includes: Telephone method, Document/Report method, Mail or Postal

questionnaire, On-line interview method, etc.

1.6 PRESENTATION OF DATA

When raw data are collected, they are organized numerically by distributing them into

classes or categories in order to determine the number of individuals belonging to each
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class. Most cases, it is necessary to present data in tables, charts and diagrams in order

to have a clear understanding of the data, and to illustrate the relationship existing

between the variables being examined.

1.6.1 FREQUENCY TABLE

This is a tabular arrangement of data into various classes together with their corre-

sponding frequencies.

Procedure for forming frequency distribution

Given a set of observation x1; x2; :::; xn, for a single variable.

1. Determine the range (R) = L � S where L = largest observation in the raw data;

and S = smallest observation in the raw data.

2. Determine the appropriate number of classes or groups (K). The choice of K is

arbitrary but as a general rule, it should be a number (integer) between 5 and 20

depending on the size of the data given. There are several suggested guide lines aimed

at helping one decided on how many class intervals to employ.

Two of such methods are:

(a) K = 1 + 3:322� log10(n)

(b) K =
p
n where n = number of observations.

3. Determine the width (w) of the class interval. It is determined as w = R
K

4. Determine the numbers of observations falling into each class interval i.e. �nd the

class frequencies.

NOTE: With advent of computers, all these steps can be accomplishes easily.
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SOME BASIC DEFINITIONS

Variable: This is a characteristic of a population which can take di¤erent values.

Basically, we have two types, namely: continuous variable and discrete variable. A

continuous variable is a variable which may take all values within a given range. Its

values are obtained by measurements e.g. height, volume, time, exam score etc. A

discrete variable is one whose value change by steps. Its value may be obtained by

counting. It normally takes integer values e.g. number of cars, number of chairs.

Class interval: This is a sub-division of the total range of values which a (continuous)

variable may take. It is a symbol de�ning a class E.g. 0-9, 10-19 etc. there are three

types of class interval, namely: Exclusive, inclusive and open-end classes method.

Exclusive method:

When the class intervals are so �xed that the upper limit of one class is the lower limit

of the next class; it is known as the exclusive method of classi�cation. E.g. Let some

expenditures of some families be as follows: 0 �1000, 1000 �2000, etc. It is clear that

the exclusive method ensures continuity of data as much as the upper limit of one class

is the lower limit of the next class. In the above example, there are so families whose

expenditure is between 0 and 999.99. A family whose expenditure is 1000 would be

included in the class interval 1000-2000.

Inclusive method:

In this method, the overlapping of the class intervals is avoided. Both the lower and

upper limits are included in the class interval. This type of classi�cation may be used

for a grouped frequency distribution for discrete variable like members in a family,

number of workers in a factory etc., where the variable may take only integral values.
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It cannot be used with fractional values like age, height, weight etc. In case of continuous

variables, the exclusive method should be used. The inclusive method should be used

in case of discrete variable.

Open end classes:

A class limit is missing either at the lower end of the �rst class interval or at the upper

end of the last class interval or both are not speci�ed. The necessity of open end classes

arises in a number of practical situations, particularly relating to economic and medical

data when there are few very high values or few very low values which are far apart

from the majority of observations.

Class limit: it represents the end points of a class interval. {Lower class limit & Upper

class limit}. A class interval which has neither upper class limit nor lower class limit

indicated is called an open class interval e.g. "less than 25", "25 and above"

Cumulative frequency: This is the sum of a frequency of the particular class to the

frequencies of the class before it.

Example 1.The following are the marks of 50 students :

48 70 60 47 51 55 59 63 68 63 47 53 72 53 67 62 64 70 57 56 48 51 58 63 65 62 49 64

53 59 63 50 61 67 72 56 64 66 49 52 62 71 58 53 63 69 59 64 73 56.

(a) Construct a frequency table for the above data.

(b) Answer the following questions using the table obtained:

(i) how many students scored between 51 and 62?

(ii) how many students scored above 50?

(iii) what is the probability that a student selected at random from the class will

score less than 63?

Solution 1 (a) Range (R) =73-47=26
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# of classes (k) =
p
n =

p
50 = 7:07 � 7

Class size (w) = R
k
= 26

7
= 3:7 � 4

Frequency table

Mark frequency

47-50 7

51-54 7

55-58 7

59-62 8

63-66 11

67-70 6

71-74 4P
50

(b) (i) 22 (ii) 43 (iii) 0.58

Example 2. The following data represent the ages (in years) of people living in a

housing estate :

18 31 30 6 16 17 18 43 2 8 32 33 9 18 33 19 21 13 13 14 14 6 52 45 61 23 26 15 14 15

14 27 36 19 37 11 12 11 20 12 39 20 40 69 63 29 64 27 15 28.

Present the above data in a frequency table showing the following columns; class inter-

val, class mark (mid-point), frequency and cumulative frequency in that order.

Solution 2 Range (R) =69-2=67

# of classes (k) =
p
n =

p
50 = 7:07 � 7

Class size (w) = R
k
= 67

7
= 9:5 � 10
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class interval class mark frequency cumulative frequency

2-11 6.5 7 7

12-21 16.5 21 28

22-31 26.5 8 36

32-41 36.5 7 43

42-51 46.5 2 45

52-61 56.5 2 47

62-71 66.5 3 50

1.6.2 GRAPHICAL PRESENTATION OF DATA

It is not enough to represent data in a tabular form. The most attractive way of

representing data is through charts or graphs.

PIE CHART

A pie chart is a circular graph in which numerical data are represented by sectors of a

circle. The angles of the sectors are proportional to the frequencies of the items they

represent

Example. In a school, the lesson periods for each week are given below.

English 7, Maths 10, Biology 3, Physics 4, Chemistry 3, others 9. Draw a pie chart to

illustrate this information.

Solution 3 Total no. of periods in a week = 7+10+3+4+3+9 =36
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Subject N� of Periods Angle of sector

English 7 7
36
� 360� = 70�

Maths 10 10
36
� 360� = 100�

Biology 3 3
36
� 360� = 30�

Physics 4 4
36
� 360� = 40�

Chemistry 3 3
36
� 360� = 30�

others 9 9
36
� 360� = 90�P

36 360�

19%

28%

8%

11%

8%

25%

English
Maths
Biology
Physics
Chemistry
others
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BAR CHART

A bar chart is a statistical graph in which bars (rectangular bars) are drawn such that

their lengths or heights are proportional to the quantities or item they represent. Each

bar is separated by equal gaps.

Example. The allotment of time in minutes per week for some of the university courses

in second semester is :

Courses Minutes

GNS 104 60

MTS 102 120

STS 102 180

ECO 102 120

BFN 108 120

PHS 192 140

GNS 104 MTS 102 STS 102 ECO 102 BFN 108 PHS 192
0

20

40

60

80

100

120

140

160

180
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HISTOGRAM

Histograms are similar to bar charts; they are a way to display counts of data. A

bar graph charts actual counts against categories; The height of the bar indicates the

number of items in that category. A histogram displays the same categorical variables

in �bins�.

A bin shows how many data points are within a range (an interval). Normally, you

choose the range that best �ts your data. There are no set rules about how many bins

you can have, but the rule of thumb is 5-20 bins. Any more than 20 bins and your

graph will be hard to read. Fewer than 5 bins and your graph will have little (if any)

meaning.

What does the height of a bar in a histogram represent?

Unlike a bar chart, the area of a bar in a histogram represents the frequency, not the

height. The frequency is calculated by multiplying the width of the bin by the height.

The height of a bar in a histogram indicates frequency (counts) only if the bin widths

are evenly spaced. For example, if you are plotting magnitudes of earthquakes and your

bins are 3-5, 5-7 and 7-9, each bin is spaced two numbers apart and so the height of

the bar would equal the frequency. However, histograms don�t always have even bins.

When a histogram has uneven bins, the height does not equal the frequency.

The table below gives the marks of 80 students on an exam. The data has already been

grouped for us into 10 classes. The exam scores are given in whole marks.
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Range of marks Frequency

1�10 2

11�20 2

21�30 4

31�40 6

41�50 7

51�60 8

61�70 15

71�80 22

81�90 10

91�100 4

Total 80

Each of the intervals from 1�10 marks, 11�20 marks and so on is called a class interval.

In this example, each class interval is an interval of 10 marks, namely the marks 1 to

10 including both 1 and 10, or 11 to 20 including both 11 and 20, etc. The table tells

us that, for example, the class interval 21�30 has a frequency of 4. This means that

4 students scored marks between 21 and 30 inclusive but we don�t know their exact

marks. A histogram of these data has been drawn below.

Here we have used the right hand endpoint of the class intervals to indicate our hori-

zontal scale. All the class intervals have the same width, 10 marks.

The height of each column represents the frequency per 10 mark interval.

The area of each column represents the number of members in each class interval, or

frequency. For the interval 21�30, Area of the rectangle = no. of 10 mark intervals �

frequency/10 mark interval = 1� 4 = 4.

Since each column has the same width, i.e. one, its height is equal to its area. The
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total area enclosed represents the total number in the sample.

If we are given a histogram, we can use it to get information about the sample. For

example, we can use the histogram in the above �gure to estimate the number of people

with marks between 26 and 40. We want to �nd the area of the histogram between the

two dotted lines in the next �gure. The area is shaded to help you.

This area is (1
2
� 4)+ (1� 6) = 8. That is, we take half the area of the rectangle 21�30

and add the area of the rectangle 31�40. So we estimate 8 people have marks between

26 and 40.
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Now suppose the information is grouped di¤erently.

Range of marks Frequency Frequency per 10 marks

1�50 21 4.2

51�60 8 8

61�70 15 15

71�80 22 22

81�100 14 7

Total 80

Here all marks of 50 and below are grouped in one class interval, and marks above 80

are also grouped together. In drawing this histogram it is extremely important that

the area of each column, rather than its height, represents the frequency. The correct

units for the vertical axis is again frequency/10 mark interval. The histogram for these

data is drawn below.

For example, the number of people who obtained more than 80 marks is the area of

rectangle A.
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Area of rectangle A = no. of 10 mark intervals � frequency/10 mark interval = 2�7

= 14.

This histogram can also be used to estimate the number of people with marks between

26 and 40. Again we �nd the area enclosed by the dotted lines drawn at 25 and 40.

This time the estimate is 1.5 � 4.2 = 6.3, so our estimate would be 6.

Ogive Graph / Cumulative Frequency Polygon

An ogive (oh-jive), sometimes called a cumulative frequency polygon, is a type of fre-

quency polygon that shows cumulative frequencies. In other words, the cumulative

percents are added on the graph from left to right.

An ogive graph plots cumulative (relative) frequency on the y-axis and class boundaries

along the x-axis. It�s very similar to a histogram, only instead of rectangles, an ogive

has a single point marking where the top right of the rectangle would be. It is usually

easier to create this kind of graph from a frequency table.

Let�s draw an Ogive graph for the set of data given before
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Range of marks Frequency Relative frequency Cumulative relative frequency

1�10 2 0.025 0.025

11�20 2 0.025 0.05

21�30 4 0.05 0.1

31�40 6 0.075 0.175

41�50 7 0.0875 0.2625

51�60 8 0.1 0.3625

61�70 15 0.1875 0.55

71�80 22 0.275 0.825

81�90 10 0.125 0.95

91�100 4 0.05 1

Total 80
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CHAPTER 2

Numerical representation of data

When summarizing and describing numerical variables you need to do more than just

prepare the tables and charts discussed in the last Chapter. In reading this chapter,

you can learn some of the descriptive measures that identify the properties of central

tendency, variation, and shape.

2.1 MEASURES OF LOCATION

These are measures of the centre of a distribution. They are single values that give a

description of the data. They are also referred to as measure of central tendency. Some

of them are arithmetic mean, geometric mean, harmonic mean, mode, and median.

25
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2.1.1 THE ARITHMETIC MEAN (A.M)

The arithmetic mean (average) of set of observation is the sum of the observation divided

by the number of observation. Given a set of a numbers x1; x2; :::; xn, the arithmetic

mean denoted by X is de�ned by

X =
x1 + x2 + :::+ xn

n
=
1

n

nX
i=1

xi

Example. The ages of ten students are 16,20,19,21,18,20,17,22,20,17. The mean age

is

X =
1

10

10X
i=1

xi =
16 + 20 + 19 + 21 + 18 + 20 + 17 + 22 + 20 + 17

10
= 19

If the values x1; x2; :::; xn occur f1; f2; :::; fn times respectively, then

X =
f1x1 + f2x2 + :::+ fnxn

n
=

Pn
i=1 fixiPn
i=1 fi

Example. Find the mean for the table below

Scores (xi) 2 5 6 8

Frequency (fi) 1 3 4 2

The average value is

X =

P4
i=1 fixiP4
i=1 fi

=
1� 2 + 3� 5 + 4� 6 + 2� 8

1 + 3 + 4 + 2
=
57

10
= 5:7

Calculation of mean from grouped data

If the items of a frequency distribution are classi�ed in intervals, we make the assump-

tion that every item in an interval has the mid-values of the interval and we use this

midpoint for xi.
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Example. The table below shows the distribution of the waiting time for some cus-

tomers in a certain petrol station.

Waiting time (in min) 1.5 �1.9 2.0 �2.4 2.5 �2.9 3.0 �3.4 3.5 �3.9 4.0 �4.4
P

No. of customers 3 10 18 10 7 2 50

mid-values 1.7 2.2 2.7 3.2 3.7 4.2

fi � xi 5.1 22 48.6 32 25.9 8.4 142

The average waiting time of the customers is X =
P6
i=1 fixiP6
i=1 fi

= 142
50
= 2:84:

ADVANTAGE OF MEAN

The mean is an average that considers all the observations in the data set. It is single

and easy to compute and it is the most widely used average.

DISADVANTAGE OF MEAN

Its value is greatly a¤ected by the extremely too large or too small observation.

2.1.2 THE HARMONIC MEAN (H.M)

The H.M of a set of numbers x1; x2; :::; xn is the reciprocal of the arithmetic mean of

the reciprocals of the numbers. It is used when dealing with the rates of the type per

(such as kilometers per hour, Dinar per liter). The formula is expressed thus

HM =
1

1
n

Pn
i=1

1
xi

=
nPn
i=1

1
xi
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If the values x1; x2; :::; xn occur f1; f2; :::; fn times respectively, then

HM =

Pn
i=1 fiPn
i=1

fi
xi

Example. The harmonic mean of 2,4,8,11,4 is HM = 5
1
2
+ 1
4
+ 1
8
+ 1
11
+ 1
4

= 440
107
= 4: 112 1

The harmonic mean takes into account every value and extreme values have least e¤ect.

The formula breaks down when "0" is one of the observations.

2.1.3 THE GEOMETRIC MEAN(G.M)

The geometric mean is useful in �nding the average change of percentages, ratios,

indexes, or growth rates over time. It has a wide application in business and economics

because we are often interested in �nding the percentage changes in sales, salaries, or

economic �gures, such as the gross domestic product, which compound or build on each

other. The geometric mean of a set of n positive numbers x1; x2; :::; xn is de�ned as the

nth root of the product of n values. The formula for the geometric mean is written

GM = n
p
x1 � x2 � :::� xn

If fi is the frequency of xi, then

GM =
Pn
i=1 fi

q
xf11 � xf22 � :::� xfnn

Example. The geometric average of 5, 8, 12, 25 and 34 is

GM = 5
p
5� 8� 12� 25� 34 = 13: 247
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Note that GM calculate takes into account every value but It cannot be computed

when "0" is on of the observation.

Relation between Arithmetic mean, Geometric and Harmonic

In general, the geometric mean for a set of data is always less than or equal to the

corresponding arithmetic mean but greater than or equal to the harmonic mean.

That is,

HM � GM � AM

The equality signs hold only if all the observations are identical.

2.1.4 THE MEDIAN

This is the value of the variable that divides a distribution into two equal parts when

the values are arranged in order of magnitude.

If there are n (odd) observation, the median eX is the center of observation in the

ordered list. The location of the median is
�
n+1
2

�th
item.
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But if n is even, the median is the average of the two middle observations in the ordered

list. i.e. eX =
1

2

�
x
(n2 )

th + x
(n2+1)

th

�
Example. The values of a random variable x are given as 8,5,9,12,10,6 and 4. Find

the median ?

In an sorted array: 4,5,6,8,9,10,12. n = 7 is odd, therefore, the median is

eX = x
( 7+12 )

th = x(4)th = 8

Example. The value of a random variable are given as 15,15,17,19,21,22,25 and 28.

Since n = 8 is even, the median is given by

eX =
1

2

�
x
( 82)

th + x
( 82+1)

th

�
=
1

2

�
x(4)th + x(5)th

�
=
1

2
(19 + 21) = 20:

Calculation of Median from a grouped data

The formula for calculating the median from grouped data is de�ned as

eX = L1 +

� n
2
� Cfb

fm

�
� w

Where

L1 =Lower class boundary of the median class

Cfb =Cumulative frequency before the median class

fm =Frequency of the median class

w =Class size or width

Example. The table below shows the height of 70 men randomly selected.
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Height 118-126 127-135 136-144 145-153 154-162 163-171 172-180

fi 8 10 14 18 9 7 4

Compute the median?

Height Frequency Cumulative frequency

118 �126 8 8

127 �135 10 18

136 �144 14 32

145 �153 18 50

154 �162 9 59

163 �171 7 66

172 �180 4 70

We have n
2
= 35. The sum of �rst three classes frequency is 32 which therefore means

that the median lies in the fourth class and this is the median class. Then

L1 =145

Cfb =32

fm =18

w =8

eX = L1 +
�

n
2
�Cfb
fm

�
� w = 145 +

�
70
2
�32
18

�
� 8 = 146: 33

The advantage of the median is that Its value is not a¤ected by extreme values; thus

it is a resistant measure of central tendency and It is a good measure of location in a

skewed distribution, however, It does not take into consideration all the value of the

variable.
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2.1.5 THE MODE

The mode is the value of the data which occurs most frequently. A set of data may

have no, one, two or more modes. A distribution is said to be uni-model, bimodal and

multimodal if it has one, two and more than two modes respectively. As example,the

mode of scores 2, 5, 2, 6, 7 is 2.

Calculation of mode from grouped data

From a grouped frequency distribution, the mode can be obtained from the formula

bX = Lmo +

�
�1

�1 +�2

�
� w

Where

Lmo = lower class boundary of the modal class

�1 = Di¤erence between the frequency of the modal class and the class before it

�2 = Di¤erence between the frequency of the modal class and the class after it

w = Class size

Example. For the table below, �nd the mode.

Class 11 �20 21 �30 31 �40 41 - 50 51 �60 61 �70

frequency 6 20 12 10 9 9

The modal class is the second class with f2 = 20.

Lmo =21

�1 = 14

�2 = 8

w = 9

hence, bX = Lmo +
�

�1
�1+�2

�
� w = 21 +

�
14
14+8

�
� 9 = 26: 727:
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2.2 MEASURES OF PARTITION

From the previous section, we�ve seen that the median is the value that divides a

distribution into two equal parts. Also there are other quantity that divides a set of

data (in an array) into di¤erent equal parts. Such data must have been arranged in order

of magnitude. Some of the partition values are: the quartile, deciles and percentiles.

2.2.1 THE QUARTILES

Quartiles divide a set of data in an array into four equal parts.

For ungrouped data, the distribution is �rst arranged in ascending order of magni-

tude.

Then

First Quartiles : Q1 =
�
n+1
4

�th
Second Quartile : Q2 = 2�

�
n+1
4

�th
= median

Third Quartile : Q3 = 3�
�
n+1
4

�th
member of the distribution

if for i = 1; 2; 3; i �
�
n+1
4

�
=2 N; then Qi =

x(k)+x(k+1)
2

where k is the �rst integer befor

i�
�
n+1
4

�
; x(k) and x(k+1) are the (k)th and (k + 1)th ordered observations.
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For a grouped data

Qi = Lqi +

� i�n
4
� Cfbi

fqi

�
� w; i = 1; 2; 3

Where i = 1; 2; 3 and refers to the quartile number,

Lqi : Lower class boundary of the class counting the quartile

Cfbi : Cumulative frequency before the Qi class

fqi : The frequency of the Qi class

w : Class size of the Qi class.
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2.2.2 DECILES

The values of the variable that divide the frequency of the distribution into ten equal

parts are known as deciles and are denoted by D1; D2; :::; D9: the �fth deciles is the

median (D5 = Q2 = eX).
For ungrouped data, the distribution is �rst arranged in ascending order of magni-

tude. Then

D1 :
�
n+1
10

�th
member of the distribution

...
...

D5 : 5�
�
n+1
10

�th
member of the distribution

...
...

D9 : 9�
�
n+1
10

�th
member of the distribution

if for i = 1; :::; 9; i�
�
n+1
10

�
=2 N; then Di =

x(k)+x(k+1)
2

where k is the �rst integer befor

i�
�
n+1
10

�
; x(k) and x(k+1) are the (k)th and (k + 1)th ordered observations.

For a grouped data

Di = LDi +

� i�n
10
� Cfbi

fDi

�
� w; i = 1; :::; 9

Where

LDi : Lower class boundary of the class counting the decile

Cfbi : Cumulative frequency before the Di class

fDi : The frequency of the Di class

w : Class size of the Di class.
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2.2.3 PERCENTILE

The values of the variable that divide the frequency of the distribution into hundred

equal parts are known as percentiles and are generally denoted by P1; :::; P99: The �ftieth

percentile is the median (P50 = D5 = Q2 = eX).
For ungrouped data, the distribution is �rst arranged in ascending order of magni-

tude. Then

P1 :
�
n+1
100

�th
member of the distribution

...
...

P50 : 50�
�
n+1
100

�th
member of the distribution

...
...

P99 : 99�
�
n+1
100

�th
member of the distribution

if for i = 1; :::; 99; i�
�
n+1
100

�
=2 N; then Pi =

x(k)+x(k+1)
2

where k is the �rst integer befor

i�
�
n+1
100

�
; x(k) and x(k+1) are the (k)th and (k + 1)th ordered observations.

For a grouped data

Pi = LPi +

� i�n
100
� Cfbi

fPi

�
� w; i = 1; :::; 99

Where

LPi : Lower class boundary of the class counting the percentile

Cfbi : Cumulative frequency before the Pi class

fPi : The frequency of the Pi class

w : Class size of the Pi class.

Example. For the table below, �nd by calculation (using appropriate expression)

(i) Lower quartile, Q1
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(ii) Upper Quartile, Q3

(iii) 6th Deciles, D6

(iv) 45th percentile P45

of the following distribution

Marks 20 �29 30 �39 40 �49 50 �59 60 �69 70 �79 80 �89 90 �99

Frequency 8 10 14 26 20 16 4 2

Cf 8 18 32 58 78 94 98 100

"

Q1

"

P45

"

Q3; D6

(i) Lower quartile, Q1 = Lq1 +
�

100
4
�Cfb1
fq1

�
� w = 40 +

�
25�18
14

�
� 10 = 45

(ii) Upper Quartile, Q3 = Lq3 +
�

3�100
4

�Cfb3
fq3

�
� w = 60 +

�
75�58
20

�
� 10 = 68: 5

(iii) 6th Deciles, D6 = LD6 +
�

6�100
10

�Cfb6
fD6

�
� w = 60 +

�
60�58
20

�
� 10 = 61

(iv) 45th percentile P45 = LP45 +
�

45�100
100

�Cfb45
fP45

�
� w = 50 +

�
45�32
26

�
� 10 = 55

2.2.4 The Box-plot

The box-plot is another way of representing a data set graphically. It is constructed

using the quartiles, and gives a good indication of the spread of the data set and its

symmetry (or lack of symmetry). It is a very useful method for comparing two or more

data sets.

The box-plot consists of a scale, a box drawn between the �rst and third quartile, the

median placed within the box, whiskers on both sides of the box and outliers (if any).

The two dashed vertical lines in the �gure are the lower and upper outlier thresholds

and are not normally included in a box-plot.
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The following data set was used to construct a box-plot :

57 46 61 66 48 59 55 56 60 49 44 53 68 57 55 54 49 50 52 54 62 59 51 52 53 54 47 53

Constructing a Box-plot

Step 1: Order the data and calculate the quartiles.

44 46 47 48 49 49 50

51 52 52 53 53 53 54

54 54 55 55 56 57 57

59 59 60 61 62 66 68

Now we calculate the median, the �rst quartile and the third quartile.

For these data, median = 54, the �rst quartile = 50.5 and the third quartile = 58.

With this information we can begin to construct the box-plot.

Step 2: Draw the scale and mark on the quartiles.

Mark the median at the correct place above the scale with a asterix, draw a box around

this asterix with the left hand side of the box at the �rst quartile, 50.5, and the right

hand side of the box at the third quartile, 58. This is illustrated in next �gure
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Step 3: Calculate the interquartile range and determine the position of the outlier

thresholds.

Interquartile range = third quartile - �rst quartile = 58 - 50.5 = 7.5.

The position of the lower outlier threshold is found by subtracting the interquartile

range from the �rst quartile, 50.5 - 7.5 = 43.

The position of the upper outlier threshold is found by adding the interquartile range

to the third quartile, 58 + 7.5 = 65.5.

(Some texts add or subtract 1.5 � interquartile range.)

We now add the outlier thresholds to our diagram. This is illustrated in the �gure

below.

Step 4: Use the outlier thresholds to draw the whiskers.
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To draw the left hand whisker, we need the smallest data value that lies inside the

outlier thresholds. In this example, it is the value 44. This is drawn on our diagram

with a small cross level with the asterix. A horizontal line is now drawn to the left

hand side of the box.

To draw the right hand whisker, we �nd the largest data value that lies inside the outlier

thresholds. In this example, the value is 62. This is drawn on the right hand side of

the box with a small cross and connected to the box by a horizontal line.

This is illustrated in the next �gure.

Step 5: Determine the outliers and remove the outlier thresholds.

Values (if any) that lie outside the outlier thresholds are called outliers. In this example,

66 and 68 are outliers. These are placed on the diagram using a small square or circle.

Finally, the outlier thresholds are removed.

The completed box-plot is illustrated in following �gure.



CHAPTER 2. NUMERICAL REPRESENTATION OF DATA 41

2.3 MEASURES OF DISPERSION

Dispersion or variation is degree of scatter or variation of individual value of a vari-

able about the central value such as the median or the mean. These include range,

mean deviation, semi-interquartile range, variance, standard deviation and coe¢ cient

of variation.

2.3.1 THE RANGE

This is the simplest method of measuring dispersions. It is the di¤erence between the

largest and the smallest value in a set of data. It is commonly used in statistical quality

control. However, the range may fail to discriminate if the distributions are of di¤erent

types.

Range = L� S



CHAPTER 2. NUMERICAL REPRESENTATION OF DATA 42

2.3.2 SEMI �INTERQUARTILE RANGE

This is the half of the di¤erence between the �rst (lower) and third quartiles (upper).

It is good measure of spread for midrange and the quartiles.

S:I:R =
Q3 �Q1

2

2.3.3 THE MEAN/ABSOLUTE DEVIATION

Mean deviation is the mean absolute deviation from the centre. A measure of the center

could be the arithmetic mean or median.

Given a set x1; :::; xn, the mean deviation from the arithmetic mean is de�ned by:

AD =
1

n

nX
i=1

��xi �X
��

In a grouped data

AD =
1Pn
i=1 fi

nX
i=1

fi
��xi �X

��
Example. Below is the average of 6 heads household randomly selected from a country.

47, 45, 56, 60, 41, 54 .Find the (i) Range, (ii) Mean, (iii) Mean deviation from the

mean.

The range of the data is R = 60 � 41 = 19; and the mean is X = 50:5: The absolute
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deviation from the mean is

AD =
1

n

nX
i=1

��xi �X
��

=
j47� 50:5j+ j45� 50:5j+ j56� 50:5j+ j60� 50:5j+ j41� 50:5j+ j54� 50:5j

6

= 6: 166 7

Example.The table below shown the frequency distribution of the scores of 42 students.

the mean deviation from the mean (X = 1Pn
i=1 fi

Pn
i=1 fixi =

1429
42

= 34: 024) for the

data is AD = 1Pn
i=1 fi

Pn
i=1 fi

��xi �X
�� = 465:76

42
= 11: 09:

Scores midpoint xi fi fixi
��x�X

�� fi
��x�X

��
0-9 4.5 2 9 29.52 59.04

10-19 14.5 5 72.5 19.52 97.6

20-29 24.5 8 196 9.52 76.16

30-39 34.5 12 414 0.48 5.76

40-49 44.5 9 400.5 10.48 94.32

50-59 54.5 5 272.5 20.48 102.4

60-69 64.5 1 64.5 30.48 30.48

42 1429 465.76

2.3.4 THE STANDARD DEVIATION AND VARIANCE

The standard deviation, usually denoted by the Greek alphabet �(small signal is for the

population) is de�ned as the "positive square root of the arithmetic mean of the squares

of the deviation of the given observation from their arithmetic mean". The variance of

a set of observations is de�ned as "the square of the standard deviation" and is thus
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given by �2:

Given x1; :::; xn as a set of observations, then the standard deviation and variance are

given by:

STD For population For samples

scattered data � =
q

1
N

PN
i=1 (xi � �)2 s =

q
1
n�1

Pn
i=1

�
xi �X

�2
grouped data � =

q
1PN
i=1 fi

PN
i=1 fi (xi � �)2 s =

r
1

(
Pn
i=1 fi)�1

Pn
i=1 fi

�
xi �X

�2
VAR For population For samples

scattered data �2 = 1
N

PN
i=1 (xi � �)2 s2 = 1

n�1
Pn

i=1

�
xi �X

�2
grouped data �2 = 1PN

i=1 fi

PN
i=1 fi (xi � �)2 s2 = 1

(
Pn
i=1 fi)�1

Pn
i=1 fi

�
xi �X

�2
When we compute the variance, it is important to understand the unit of measure and

what happens when the di¤erences in the numerator are squared. When we calculate

the variance, the unit of measure for the variance will be the one of the studied vari-

able squared. There is a way out of this di¢ culty. By taking the square root of the

population variance, we can transform it to the same unit of measurement used for the

original data and this is the main importance of the standard deviation.

The formula for the population mean is � =
P
x=N . We just changed the symbols

for the sample mean; that is, X =
P
x=n. Unfortunately, the conversion from the

population variance to the sample variance is not as direct. It requires a change in the

denominator. Instead of substituting n (number in the sample) for N (number in the

population), the denominator is n� 1.

Why is this change made in the denominator? Although the use of n is logical since

x is used to estimate �, it tends to underestimate the population variance, �2. The

use of (n� 1) in the denominator provides the appropriate correction for this tendency.
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Because the primary use of sample statistics like s2 is to estimate population parameters

like �2, (n� 1) is preferred to n in de�ning the sample variance. We will also use this

convention when computing the sample standard deviation.

Chebyshev�s Theorem

We have stressed that a small standard deviation for a set of values indicates that these

values are located close to the mean. Conversely, a large standard deviation reveals that

the observations are widely scattered about the mean. The Russian mathematician P. L.

Chebyshev (1821�1894) developed a theorem that allows us to determine the minimum

proportion of the values that lie within a speci�ed number of standard deviations of the

mean. For example, according to Chebyshev�s theorem, at least three out of every four,

or 75%, of the values must lie between the mean plus two standard deviations and the

mean minus two standard deviations. This relationship applies regardless of the shape

of the distribution. Further, at least eight of nine values, or 88.9%, will lie between plus

three standard deviations and minus three standard deviations of the mean. At least

24 of 25 values, or 96%, will lie between plus and minus �ve standard deviations of the

mean.

CHEBYSHEV�S THEOREM For any set of observations (sample or population),

the proportion of the values that lie within k standard deviations of the mean is at least

1� 1=k2, where k is any value greater than 1.

The Empirical Rule

Chebyshev�s theorem applies to any set of values; that is, the distribution of values can

have any shape. However, for a symmetrical, bell-shaped distribution such as the one

in Chart below, we can be more precise in explaining the dispersion about the mean.
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These relationships involving the standard deviation and the mean are described by the

Empirical Rule, sometimes called the Normal Rule.

EMPIRICAL RULE For a symmetrical, bell-shaped frequency distribution, approx-

imately 68% of the observations will lie within plus and minus one standard deviation

of the mean; about 95% of the observations will lie within plus and minus two standard

deviations of the mean; and practically all (99.7%) will lie within plus and minus three

standard deviations of the mean.

These relationships are portrayed graphically in the below plot for a bell-shaped distri-

bution with a mean of 100 and a standard deviation of 10.

2.3.5 COEFFICIENT OF VARIATION/DISPERSION

This is a dimension less quantity that measures the relative variation between two

servers observed in di¤erent units. The coe¢ cients of variation are obtained by dividing

the standard deviation by the mean and multiply it by 100. Symbolically

CV =
�

�
� 100
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The distribution with smaller C.V is said to be better.

Example. The data below represents the age of 77 applicants in an achievement text

for the post of Botanist in a large company. Compute the

(i) Mean

(ii) Standard deviation

(iii) Coe¢ cient of variation.

Ages(in years) xi fi fixi fi(x�X)2

50-54 52 1 52 402.40

55-59 57 2 114 453.61

60-64 62 10 620 1012.04

65-69 67 12 804 307.24

70-74 72 18 1296 0.07

75-79 76 25 1925 610.09

80-84 82 9 738 889.23

77 5549 3674.68

(i) X = � = 5549
77
= 72: 065; (ii) � =

q
1PN
i=1 fi

PN
i=1 fi (xi � �)2 =

q
3674:68
77

= 6: 908 2

(iii) CV = �
�
� 100 = 6: 908 2

72: 065
� 100% = 9: 586 1%:

2.3.6 SKEWNESS

Another characteristic of a distribution is the shape. There are four shapes commonly

observed: symmetric, positively skewed, negatively skewed, and bimodal. In a symmet-

ric distribution the mean and median are equal and the data values are evenly spread

around these values. The shape of the distribution below the mean and median is a

mirror image of distribution above the mean and median. A distribution of values is
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skewed to the right or positively skewed if there is a single peak, but the values extend

much farther to the right of the peak than to the left of the peak. In this case, the

mean is larger than the median. In a negatively skewed distribution there is a single

peak, but the observations extend farther to the left, in the negative direction, than to

the right. In a negatively skewed distribution, the mean is smaller than the median.

Positively skewed distributions are more common. Salaries often follow this pattern.

Think of the salaries of those employed in a small company of about 100 people. The

president and a few top executives would have very large salaries relative to the other

workers and hence the distribution of salaries would exhibit positive skewness. A bi-

modal distribution will have two or more peaks. This is often the case when the values

are from two or more populations. This information is summarized in the following

�gure.

There are several formulas in the statistical literature used to calculate skewness. The

simplest, developed by Professor Karl Pearson (1857�1936), is based on the di¤erence

between the mean and the median.
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PEARSON�S COEFFICIENT OF SKEWNESS

sk =
3(X � eX)

s

Using this relationship, the coe¢ cient of skewness can range from -3 up to 3. A value

near -3, such as -2.57, indicates considerable negative skewness. A value such as 1.63

indicates moderate positive skewness. A value of 0, which will occur when the mean

and median are equal, indicates the distribution is symmetrical and there is no skewness

present.

MEASURE OF SKEWNESS LARGELY USED IN SOFTWARES

sk =
n

(n� 1)(n� 2)
X�

x�X

s

�3
This formula o¤ers an insight into skewness. The right-hand side of the formula is

the di¤erence between each value and the mean, divided by the standard deviation.

That is the portion x�X
s
of the formula. This idea is called standardizing. We will

discuss the idea of standardizing a value in more detail later when we describe the

normal probability distribution. At this point, observe that the result is to report

the di¤erence between each value and the mean in units of the standard deviation. If

this di¤erence is positive, the particular value is larger than the mean; if the value is

negative, the standardized quantity is smaller than the mean. When we cube these

values, we retain the information on the direction of the di¤erence. Recall that in the

formula for the standard deviation we squared the di¤erence between each value and

the mean, so that the result was all nonnegative values.

If the set of data values under consideration is symmetric, when we cube the standard-

ized values and sum over all the values, the result would be near zero. If there are

several large values, clearly separate from the others, the sum of the cubed di¤erences
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would be a large positive value. If there are several small values clearly separate from

the others, the sum of the cubed di¤erences will be negative.



CHAPTER 3

Two ways statistics

In a lot of statistical research, we are not interested in just one character but several

at the same time. When we study two characters X and Y on a given population, it

is generally because we want to know if there is a link between them and what is the

intensity of the link.

Example of possible relationships between the following variables: height and age;

diabetes and weight, cholesterol level and diet, ecological niche and population, sunshine

and plant growth, toxin and metabolic reaction, survival and pollution, e¤ects and

doses...etc. The characters studied can be both qualitative and quantitative.

Correlation is a statistical technique to ascertain the association or relationship between

two or more variables. Correlation analysis is a statistical technique to study the degree

and direction of relationship between two or more variables. A correlation coe¢ cient is

a statistical measure of the degree to which changes to the value of one variable predict

change to the value of another. When the �uctuation of one variable reliably predicts

51
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a similar �uctuation in another variable, there�s often a tendency to think that means

that the change in one causes the change in the other.

Uses of correlations:

1. Correlation analysis helps in deriving precisely the degree and the direction of such

relationship.

2. The e¤ect of correlation is to reduce the range of uncertainity of our prediction. The

prediction based on correlation analysis will be more reliable and near to reality.

3. Correlation analysis contributes to the understanding of economic behavior, aids in

locating the critically important variables on which others depend, may reveal to the

economist the connections by which disturbances spread and suggest to him the paths

through which stabilizing forces may become e¤ective

4. Economic theory and business studies show relationships between variables like price

and quantity demanded, advertising expenditure and sales promotion measures etc.

5. The measure of coe¢ cient of correlation is a relative measure of change.

Types of Correlation:

Correlation is described or classi�ed in several di¤erent ways. Three of the most im-

portant are:

I. Positive and Negative

II. Simple, Partial and Multiple

III. Linear and non-linear

I. Positive, Negative and Zero Correlation.

Whether correlation is positive (direct) or negative (in-versa) would depend upon the

direction of change of the variable.
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Positive Correlation: If both the variables vary in the same direction, correlation is said

to be positive. It means if one variable is increasing, the other on an average is also

increasing or if one variable is decreasing, the other on an average is also deceasing, then

the correlation is said to be positive correlation. For example, the correlation between

heights and weights of a group of persons is a positive correlation.

Negative Correlation: If both the variables vary in opposite direction, the correlation is

said to be negative. If means if one variable increases, but the other variable decreases

or if one variable decreases, but the other variable increases, then the correlation is said

to be negative correlation. For example, the correlation between the price of a product

and its demand is a negative correlation.

Zero Correlation: Actually it is not a type of correlation but still it is called as zero or

no correlation. When we don�t �nd any relationship between the variables then, it is

said to be zero correlation. It means a change in value of one variable doesn�t in�uence

or change the value of other variable. For example, the correlation between weight of

person and intelligence is a zero or no correlation

II. Simple, Partial and Multiple Correlation:

The distinction between simple, partial and multiple correlation is based upon the

number of variables studied.

Simple Correlation: When only two variables are studied, it is a case of simple correla-

tion. For example, when one studies relationship between the marks scored by student

and the attendance of student in class, it is a problem of simple correlation.

Partial Correlation: In case of partial correlation one studies three or more variables

but considers only two variables to be in�uencing each other and the e¤ect of other

in�uencing variables being held constant. For example, in above example of relationship

between student marks and attendance, the other variable in�uencing such as e¤ective
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teaching of teacher, use of teaching aid like computer, smart board etc are assumed to

be constant.

Multiple Correlation: When three or more variables are studied, it is a case of multiple

correlation. For example, in above example if study covers the relationship between

student marks, attendance of students, e¤ectiveness of teacher, use of teaching aids etc,

it is a case of multiple correlation.

III. Linear and Non-linear Correlation:

Depending upon the constancy of the ratio of change between the variables, the corre-

lation may be Linear or Non-linear Correlation.

Linear Correlation: If the amount of change in one variable bears a constant ratio to

the amount of change in the other variable, then correlation is said to be linear. If such

variables are plotted on a graph paper all the plotted points would fall on a straight

line. For example: If it is assumed that, to produce one unit of �nished product we

need 10 units of raw materials, then subsequently to produce 2 units of �nished product

we need double of the one unit.

Non-linear Correlation: If the amount of change in one variable does not bear a constant

ratio to the amount of change to the other variable, then correlation is said to be non-

linear. If such variables are plotted on a graph, the points would fall on a curve and not

on a straight line. For example, if we double the amount of advertisement expenditure,

then sales volume would not necessarily be doubled.

Methods of measurement of correlation:

Quanti�cation of the relationship between variables is very essential to take the bene�t

of study of correlation. For this, we �nd there are various methods of measurement of

correlation, which can be represented as given below
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Among these methods we will discuss only Scatter Diagram, Karl Pearson�s Coe¢ cient

of Correlation and Spearman�s Rank Coe¢ cient of Correlation.

3.1 Bivariate statistical distributions

We consider a population of N individuals measured simultaneously by the two char-

acters X and Y which may be qualitative or quantitative, and which may not be of the

same nature. The k modalities of X are denoted by x1; :::; xj; :::; xk; the l modalities of

Y are denoted by y1; :::; yj; :::; yl:

3.1.1 Statistical table

The distribution of theN observations, or joint distribution, according to the modalities

of X and Y is presented in the form of a double-entry table, called a contingency table

or a double-entry table or a cross table or sometimes a correlation table (table of k

rows and l columns).
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� The number nij indicates the number of times the modality xi of the variable X

and the modality yj of the variable Y were observed simultaneously.

� The number ni:, called the marginal number of X, represents the total number of

observations of modality xi of X, whatever the modality of Y .

ni: =
lX

j=1

nij

� Similarly, the number n:j, called the marginal number of Y , is the total number

of observations of the modality yj of Y , whatever the modality of X.

n:j =
kX
i=1

nij

Obviously, we have
kX
i=1

lX
j=1

nij =

lX
j=1

n:j =

kX
i=1

ni: = N:



CHAPTER 3. TWO WAYS STATISTICS 57

The joint distribution can also be dened by the frequencies

fij =
nij
N

Example. Consider the following two-dimensional statistical series of the pair (X; Y )

3.1.2 Graphical Representation

This is a very convenient graph for representing the simultaneous observations of two

quantitative variables.

Scatter Diagram

If the observations of two statistical variables X and Y are known individually, we

start by visualizing them by representing them in the form of a cloud of points: in a

Cartesian coordinate system, each observation (xi; yi) is represented by the point Mi

of coordinates (xi; yi), and the shape of the cloud gives information on the type of a

possible link.

This is graphic method of measurement of correlation. It is a diagrammatic represen-

tation of bivariate data to ascertain the relationship between two variables. Under this
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method the given data are plotted on a graph paper in the form of dot. i.e. for each

pair of X and Y values we put dots and thus obtain as many points as the number

of observations. Usually an independent variable is shown on the X-axis whereas the

dependent variable is shown on the Y -axis. Once the values are plotted on the graph it

reveals the type of the correlation between variable X and Y . A scatter diagram reveals

whether the movements in one series are associated with those in the other series.

� Perfect Positive Correlation: In this case, the points will form on a straight line

falling from the lower left hand corner to the upper right hand corner.

� Perfect Negative Correlation: In this case, the points will form on a straight line

rising from the upper left hand corner to the lower right hand corner.

� High Degree of Positive Correlation: In this case, the plotted points fall in a

narrow band, wherein points show a rising tendency from the lower left hand

corner to the upper right hand corner.

� High Degree of Negative Correlation: In this case, the plotted points fall in a

narrow band, wherein points show a declining tendency from upper left hand
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corner to the lower right hand corner.

� Low Degree of Positive Correlation: If the points are widely scattered over the

diagrams, wherein points are rising from the left hand corner to the upper right

hand corner.

� Low Degree of Negative Correlation: If the points are widely scattered over the

diagrams, wherein points are declining from the upper left hand corner to the

lower right hand corner.

� Zero (No) Correlation: When plotted points are scattered over the graph haphaz-

ardly, then it indicate that there is no correlation or zero correlation between two

variables.

Example. Given the following pairs of values

Capital Employed (M) 1 2 3 4 5 7 8 9 11 12

Pro�t (M) 3 5 4 7 9 8 10 11 12 14
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(a) Draw a scatter diagram

(b) Do you think that there is any correlation between pro�ts and capital employed?

Is it positive or negative? Is it high or low?

Capital
0 2 4 6 8 10 12

P
ro

fit

2

4

6

8

10

12

14

From the observation of scatter diagram we can say that the variables are positively

correlated. In the diagram the points trend toward upward rising from the lower left

hand corner to the upper right hand corner, hence it is positive correlation. Plotted

points are in narrow band which indicates that it is a case of high degree of positive

correlation.

3.1.3 Marginal distributions

The marginal distribution is determined by isolating the �rst and last columns of the

contingency table. The �rst column contains the modalities xi and the last, the corre-

sponding frequencies. That is to say on the margin of the contingency table, we can

extract the data only with respect to X and only with respect to Y .

The k pairs (xi;ni) form the marginal distribution of the variable X.

The l pairs (yj;nj) form the marginal distribution of the variable Y .
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Marginal distributions can also be given as frequencies

fi: =
ni:
N

and f:j =
n:j
N
:

Moreover, we have
kX
i=1

fi: =

lX
j=1

f:j = 1:

These two distributions can be presented in the form of statistical tables

X Marginal

frequency

marginal

relative

frequency

Y Marginal

frequency

marginal

relative

frequency

x1 n1: f1: =
n1:
N

y1 n:1 f:1 =
n:1
N

x2 n2: f2: =
n2:
N

y2 n:2 f:2 =
n:2
N

...
...

...
...

...
...

xk nk: fk: =
nk:
N

yl n:l f:l =
n:l
N

Total N 1 Total N 1

3.1.4 Numerical description

Having a joint distribution, we can deduce the marginal distributions which allow us to

study each variable separately by graphically representing its distribution and, if it is a

quantitative variable, by calculating its central tendency and dispersion characteristics.

Characteristic of marginals

The marginal means of the variables X and Y are:

X =
1

N

kX
i=1

ni:xi =
kX
i=1

fi:xi and Y =
1

N

lX
j=1

n:jyj =
lX

j=1

f:jyj:
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The marginal variances of the variables X and Y are given by :

V ar(X) = X2 �X
2
=

kX
i=1

fi:x
2
i �

 
kX
i=1

fi:xi

!2
and

V ar(Y ) = Y 2 � Y
2
=

lX
j=1

f:jy
2
j �

 
lX

j=1

f:jyj

!2

The marginal standard deviations of X and Y are given by the squared roots of their

variances.

Example. Reconsider the following two-dimensional statistical series of the pair (X; Y )

X = 1
N

Pk
i=1 ni:xi =

1
35
(2� 13 + 3� 12 + 4� 10) = 2: 914 3:

and

Y = 1
N

Pl
j=1 n:jyj =

1
35
(�2� 9 + 0� 10 + 2� 6 + 3� 10) = 0:685 71:

The marginal variances of the variables X and Y are

V ar(X) = X2 �X
2
= 1

35
(22 � 13 + 32 � 12 + 42 � 10)� (2: 914 3)2 = 0:649 71

and

V ar(Y ) = Y 2 � Y
2
= 1

35

�
(�2)2 � 9 + 02 � 10 + 22 � 6 + 32 � 10

�
� (0:685 71)2 = 3:

815 5:
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Conditional distributions

The distribution of the variable Y knowing the variable X being equal to xi, is called

the conditional distribution of Y for X = xi :

Y j X = xi y1 � � � yj � � � yl Total

Frequency ni1 � � � nij � � � nil ni:

This distribution of ni observations, satisfying the condition X= xi, is presented in the

form of conditional relative frequencies:

fj=i =
nij
ni:

and
lX

j=1

fj=i = 1:

There are k conditional distributions of Y for i = 1; :::; k.

When the variable Y is quantitative, we can calculate for each value xi its conditional

mean Y i and its conditional variance

Y i =
lX

j=1

fj=iyj and V ar(Y j X = xi) =
lX

j=1

fj=i
�
yj � Y i

�2
The k modalities of X inducing a partition of the observations into k subgroups, the

mean can be expressed as a weighted sum of the k means Y i

Y =
kX
i=1

fi:Y i

Symmetrically, we have l conditional distributions of X and we de�ne the conditional

relative frequencies fi=j

fi=j =
nij
n:j

and
kX
i=1

fi=j = 1:
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X j Y = yj x1 � � � xi � � � xk Total

Frequency f1=j � � � fi=j � � � fk=j 1

When the variable X is quantitative, we can calculate for each value yj its conditional

mean Xj and its conditional variance

Xj =

kX
i=1

fi=jxi and V ar(X j Y = yj) =

kX
i=1

fi=j
�
xi �Xj

�2
We have the following relationship between the mean X and the l conditional means

Xj

X =
lX

j=1

f:jXj:

Example. Retake the previous example. thus, to determine the conditional mean of

X when Y = 2, it su¢ ces to observe the behavior of X relative to the column Y = 2.

X ni2

2 0

3 3 X2 =
1
6
(0� 2 + 3� 3 + 4� 3) = 3: 5

4 3

n:2 6

3.1.5 Covariance between two statistical variables

The covariance is equal to the average of the deviations of the pairs (xi; yi) of X and

Y with respect to the point (X;Y )

Cov(X; Y ) =
1

N

NX
i=1

�
xi �X

� �
yi � Y

�
=
1

N

NX
i=1

xiyi �X:Y
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In the case of grouped data in a contingency table (weighted covariance) is given by

Cov(X; Y ) =
1

N

kX
i=1

lX
j=1

�
xi �X

� �
yj � Y

�
=
1

N

kX
i=1

lX
j=1

nijxiyj �X:Y

The covariance indicates the direction of the relationship between the variables X and

Y .

Thus, the following cases can be distinguished:

- If Cov(X;Y ) > 0, then we can say that the relationship between the two variables is

positive.

In this case, these two variables vary in the same direction.

- If Cov(X;Y ) < 0; then we can say that the relationship between the two variables is

negative.

In this case, these two variables vary in opposite directions.

- If Cov(X;Y ) = 0, then we can say that there is no relationship between the two

variables.

In this case, the variations of one do not lead to the variation of the other.

Covariance properties

1. Cov(X;Y ) = Cov(Y ;X):

2. Cov(X;X) = V ar(X):

3. V ar(X + Y ) = var(X) + var(Y ) + 2cov(X;Y ):

4. 8a; b;x0; y0 2 R : Cov(aX+x0; bY +y0) = abCov(X;Y ) =) V ar(aX+ bY + c) =

a2V ar(X) + b2V ar(Y ) + 2abCov(X;Y ).

5. jCov(X;Y )j �
p
V ar(X)V ar(Y ):
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The magnitude of the covariance is not very informative since it is a¤ected by the

magnitude of both X and Y . However, the sign of the covariance tells us something

useful about the relationship between X and Y .

Consider the following conditions:

� xi > X and yj > Y then (xi �X)(yj � Y ) will be positive.

� xi < X and yj < Y then (xi �X)(yj � Y ) will be positive.

� xi > X and yj < Y then (xi �X)(yj � Y ) will be negative.

� xi < X and yj > Y then (xi �X)(yj � Y ) will be negative.

Since Cov(X; Y ) depends on the magnitude of X and Y we would prefer to have a

measure of association that is not a¤ected by changes in the scales of the variables.

The most common measure of linear association is correlation where the magnitude of

the correlation measures the strength of the linear association and the sign determines

if it is a positive or negative relationship.

3.1.6 Karl Pearson�s Coe¢ cient of linear Correlation

Karl Pearson�s method of calculating coe¢ cient of correlation is based on the covariance

of the two variables in a series. This method is widely used in practice and the coe¢ cient

of correlation is denoted by the symbol ���. If the two variables under study are X

and Y , the following formula suggested by Karl Pearson can be used for measuring the

degree of relationship of correlation.

�(X; Y ) =
Cov(X; Y )

�X :�Y

�1 � �(X;Y ) � 1
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Remarque 3.1.1 The link between two numerical variables can be studied by the cor-

relation coe¢ cient. Nevertheless, it should be kept in mind that the Pearson correlation

coe¢ cient only measures linear relationships, and its value is in no way a re�ection of

the existence of a causal link between the two variables. Given random variables X and

Y

X and Y are independent =) Cov(X; Y ) = �(X;Y ) = 0

Cov(X; Y ) = �(X; Y ) = 0 ; X and Y are independent

Properties of the linear correlation coe¢ cient:

1. The correlation coe¢ cient is always between -1 and +1.

2. If � = +1 then the points are all on the same increasing line, the perfect positive

linear correlation.

3. If � = �1 then the points are all on the same decreasing line, the perfect negative

linear correlation.

4. If � = 0 then there is no linear relationship between the variables X and Y .

5. We have for all a; b; x0; y0 2 R :

�(aX + x0; bY + y0) =
Cov(aX + x0; bY + y0)

�aX+x0 :�bY+y0
=
abCov(X; Y )

jabj�X :�Y

=

8><>: �(X; Y ) if ab > 0

��(X; Y ) if ab < 0
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Example. From following information �nd the correlation coe¢ cient between ad-

vertisement expenses and sales volume using Karl Pearson�s coe¢ cient of correlation

method.

Firm 1 2 3 4 5 6 7 8 9 10

Advertisement Exp. 11 13 14 16 16 15 15 14 13 13

Sales Volume 50 50 55 60 65 65 65 60 60 50

Let us assume that advertisement expenses are variable X and sales volume are variable

Y .

Firm xi yi
�
xi �X

�2 �
yi � Y

�2 �
xi �X

� �
yi � Y

�
1 11 50 9 64 24

2 13 50 1 64 8

3 14 55 0 9 0

4 16 60 4 4 4

5 16 65 4 49 14

6 15 65 1 49 7

7 15 65 1 49 7

8 14 60 0 4 0

9 13 60 1 4 -2

10 13 50 1 64 8P
140 580 22 360 70

X =
140

10
= 10 and Y =

580

10
= 58

�(X; Y ) =

P�
xi �X

� �
yi � Y

�qP�
xi �X

�2 �q�yi � Y
�2 = 70p

22�
p
360

= 0:786 57:
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Interpretation: From the above calculation it is very clear that there is high de-

gree of positive correlation i.e.� = 0:7866, between the two variables. i.e. Increase in

advertisement expenses leads to increased sales volume.

Example.Find the correlation coe¢ cient between age and playing habits of the follow-

ing students using Karl Pearson�s coe¢ cient of correlation method.

Age 15 16 17 18 19 20

Number of students 250 200 150 120 100 80

Regular Players 200 150 90 48 30 12

To �nd the correlation between age and playing habits of the students, we need to

compute the percentages of students who are having the playing habit.

Percentage of playing habits = (No. of Regular Players =Total No. of Students)�100

Now, let us assume that ages of the students are variable X and percentages of playing

habits are variable Y .

Age (X) % of playing habits (Y )
�
xi �X

�2 �
yi � Y

�2 �
xi �X

� �
yi � Y

�
15 200=250� 100 = 80 6:25 900 �75

16 75 2:25 625 �37:5

17 60 0:25 100 �5

18 40 0:25 100 �5

19 30 2:25 400 �30

20 15 6:25 1225 �87:5P
105 300 17.5 3350 -240
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X =
105

6
= 17:5 and Y =

300

6
= 50

�(X; Y ) =

P�
xi �X

� �
yi � Y

�qP�
xi �X

�2 �q�yi � Y
�2 = �240p

17:5�
p
3350

= �0:991 22

Interpretation: From the above calculation it is very clear that there is high degree

of negative correlation i.e. �(X;Y ) = �0:9912, between the two variables of age and

playing habits. i.e. Playing habits among students decreases when their age increases.

3.1.7 Spearman�s Rank Coe¢ cient of Correlation:

When quanti�cation of variables becomes di¢ cult such leadership ability, knowledge of

person etc, then this method of rank correlation is useful which was developed by British

psychologist Charles Edward Spearman in 1904. In this method ranks are allotted to

each element either in ascending or descending order.

The correlation coe¢ cient between these allotted two series of ranks is popularly called

as �Spearman�s Rank Correlation�and denoted by �rs�. It is de�ned as the Pearson

correlation coe¢ cient between the rank variables. For a sample of size N, the N raw

scores xi; yi are converted to ranks R(xi); R(yi) and rs is computed as

rs = �(R(X); R(Y )) =
Cov(R(X); R(Y ))

�R(X)�R(Y )

where � denotes the usual Pearson correlation coe¢ cient, but applied to the rank

variables,Cov(R(X); R(Y )) is the covariance of the rank variables, �R(X) and �R(Y )

are the standard deviations of the rank variables. Only if all N ranks are distinct
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integers, it can be computed using the popular formula

rs = 1�
6
P
d2i

N(N2 � 1)

where, di = R(xi)� R(yi) is the di¤erence between the two ranks of each observation,

N = Number of pairs of ranks.

Important Inference to keep in mind: The Spearman correlation can evaluate a monotonic

relationship between two variables � Continous or Ordinal and it is based on the

ranked values for each variable rather than the raw data.

In case of tie in ranks or equal ranks

In some cases it may be possible that it becomes necessary to assign same rank to two

or more elements or individual or entries. In such situation, it is customary to give each

individual or entry an average rank. For example, if two individuals are ranked equal

to 5th place, then both of them are allotted with common rank (5 + 6)=2 = 5:5 and

if three are ranked in 5th place, then they are given the rank of (5 + 6 + 7)=3 = 6. It

means where two or more individuals are to be ranked equal, the rank assigned for the

purpose of calculating coe¢ cient of correlation is the average of the ranks with these

individual or items or entries would have got had they di¤ered slightly with each other.

Where equal ranks are assigned to some entries, an adjustment factor is to be added to

the value of 6
P
d2i in the above formula for calculating the rank coe¢ cient correlation.

This adjustment factor is to be added for every repetition of rank. Adjustment factor

= m�(m2�1)
12

where, m = number of items whose rank are common. For example, if a

particular rank repeated two times then m=2 and if it repeats three times then m = 3

and so on.
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Hence the above formula can be re-written as follows:

rs = 1�
6
hP

d2i +
m1�(m2

1�1)
12

+
m2�(m2

2�1)
12

+ :::
i

N(N2 � 1)

The Spearman correlation is less sensitive than the Pearson correlation to strong outliers

that are in the tails of both samples. That is because Spearman�s rs limits the outlier

to the value of its rank.

Example. Ten competitors in a skill contest are ranked by three judges in the following

order:

1st Judge 1 6 5 10 3 2 4 9 7 8

2nd Judge 3 5 8 4 7 10 2 1 6 9

3rd Judge 6 4 9 8 1 2 3 10 5 7

Use the rank correlation coe¢ cient to determine which pairs of judges has the nearest

approach to common tastes.
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0 2 4 6 8 10
0

5

10
1st Judge vs 2nd Judge

0 2 4 6 8 10
0
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0 2 4 6 8 10
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10
2nd Judge vs 3nd Judge
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In order to �nd out which pair of judges has the nearest approach to common tastes,

we compare rank correlation between the judgements of

1. 1st Judge and 2nd Judge

2. 2nd Judge and 3rd Judge

3. 1st Judge and 3rd Judge

Note R1 =Rank by 1st Judge, R2 =Rank by 2nd Judge, R3 =Rank by 3rd Judge.

R1 R2 R3 d2 = (R1�R2)2 d2 = (R2�R3)2 d2 = (R1�R3)2

1 3 6 4 9 25

6 5 4 1 1 4

5 8 9 9 1 16

10 4 8 36 16 4

3 7 1 16 36 4

2 10 2 64 64 0

4 2 3 4 1 1

9 1 10 64 81 1

7 6 5 1 1 4

8 9 7 1 4 1P
d2 = 200

P
d2 = 214

P
d2 = 60

1. 1st Judge and 2nd Judge: rs = 1� 6
P
d2i

N(N2�1) = 1�
6�200

10�(102�1) = �0:212 12

2. 2nd Judge and 3rd Judge: rs = 1� 6
P
d2i

N(N2�1) = 1�
6�214

10�(102�1) = �0:296 97

3. 1st Judge and 3rd Judge: rs = 1� 6
P
d2i

N(N2�1) = 1�
6�60

10�(102�1) = 0:636 36:

Interpretation: From the above calculation it can be observed that coe¢ cient of

correlation is only positive in the judgement of the �rst and third judges. Therefore,

it can be concluded that �rst and third judges have the nearest approach to common
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tastes.

Example. From the following data, compute the rank correlation.

X 82 68 75 61 68 73 85 68

Y 81 71 71 68 62 69 80 70

Calculation of Spearman�s Rank Coe¢ cient of Correlation

X Y R1 R2 d2 = (R1 �R2)
2

82 81 2 1 1

68 71 6 3.5 6.25

75 71 3 3.5 0.25

61 68 8 7 1

68 62 6 8 4

73 69 4 6 4

85 80 1 2 1

68 70 6 5 1P
d2 = 18:5

In the problem we �nd there are repetitions of ranks. Value of X = 68 repeated 3 times

and value of Y = 71 repeated 2 times. Therefore we need to compute adjustment factor

to be added to the value of
P
d2: We have

rs = 1�
6
hP

d2i +
m1�(m2

1�1)
12

+
m2�(m2

2�1)
12

i
N(N2 � 1)

where m1 is for the value X repeated three times, m1 = 3 and for value Y repeated

two times, m2 = 2: Thus

rs = 1�
6�

h
18:5 + 3�(32�1)

12
+ 2�(22�1)

12

i
8� (82 � 1) = 0:75:
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Spearman�s Rank Coe¢ cient of Correlation = 0.75, which indicates there is high degree

of positive correlation.

3.2 Regression Analysis

Regression analysis is one of the most commonly used statistical techniques in social

and behavioral sciences as well as in physical sciences which involves identifying and

evaluating the relationship between a dependent variable and one or more independent

variables, which are also called predictor or explanatory variables. It is particularly

useful for assess and adjusting for confounding. Model of the relationship is hypothe-

sized and estimates of the parameter values are used to develop an estimated regression

equation. Various tests are then employed to determine if the model is satisfactory.

If the model is deemed satisfactory, the estimated regression equation can be used to

predict the value of the dependent variable given values for the independent variables.

Linear regression explores relationships that can be readily described by straight lines

or their generalization to many dimensions. A surprisingly large number of problems

can be solved by linear regression, and even more by means of transformation of the

original variables that result in linear relationships among the transformed variables.

When there is a single continuous dependent variable and a single independent variable,

the analysis is called a simple linear regression analysis. This analysis assumes that

there is a linear association between the two variables. Multiple regression is to learn

more about the relationship between several independent or predictor variables and a

dependent or criterion variable.

Independent variables are characteristics that can be measured directly; these variables

are also called predictor or explanatory variables used to predict or to explain the
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behavior of the dependent variable.

Dependent variable is a characteristic whose value depends on the values of independent

variables.

Objectives of Regression Analysis

Regression analysis used to explain variability in dependent variable by means of one or

more of independent or control variables and to analyze relationships among variables

to answer; the question of how much dependent variable changes with changes in each

of the independent�s variables, and to forecast or predict the value of dependent variable

based on the values of the independent�s variables.

The primary objective of regression is to develop a linear relationship between a re-

sponse variable and explanatory variables for the purposes of prediction, assumes that

a functional linear relationship exists, and alternative approaches (functional regression)

are superior.

3.2.1 Assumption of Regression Analysis

The regression model is based on the following assumptions.

� The relationship between independent variable and dependent is linear.

� The expected value of the error term is zero

� The variance of the error term is constant for all the values of the independent

variable, the assumption of homoscedasticity.

� There is no autocorrelation.

� The independent variable is uncorrelated with the error term.
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� The error term is normally distributed.

� On an average di¤erence between the observed value and the predicted value is

zero.

� On an average the estimated values of errors and values of independent variables

are not related to each other.

� The squared di¤erences between the observed value and the predicted value are

similar.

� There is some variation in independent variable. If there are more than one

variable in the equation, then two variables should not be perfectly correlated.

3.2.2 Simple Regression Model

Simple linear regression is a statistical method that allows us to summarize and study

relationships between two continuous (quantitative) variables. In a cause and e¤ect

relationship, the independent variable is the cause, and the dependent variable is the

e¤ect. Least squares linear regression is a method for predicting the value of a dependent

variable y, based on the value of an independent variable x.

� One variable, denoted (x), is regarded as the predictor, explanatory, or indepen-

dent variable.

� The other variable, denoted (y), is regarded as the response, outcome, or depen-

dent variable.

We choose a mathematical function whose graphical representation approaches the

shape of the point cloud as closely as possible. The problem is to determine the coe¢ -

cients of the function which minimize the sum of the squares of the deviations between
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the points representative of the observations and the curve representative of the func-

tion.

In the least squares method, the deviations are measured parallel to the axes, that is

to say vertically or horizontally in an orthogonal frame.

Di¤erences measured vertically (Y in X) Di¤erences measured horizontally (X in Y)

The �tted curve of Y on X

Let (xi; yi),i = 1; : : : ; n ,n observations of the pair (X; Y ). We are looking for a function

f : X �! Y = f(X). Let f(xi) be the value taken by the function f whenX = xi . The

vertical di¤erence between the point (xi; yi) of the series and the curve is noted "i = yi�

f(xi) . The gap "i is called residual gap or residual. The sum of the squared deviations

calculated for each point of the cloud is equal to
Pn

i=1 "
2
i =

Pn
i=1 (yi � f(xi))

2 :

We call The �tted curve of Y on X and we note CY=X , the representative curve of the

function such that the sum
Pn

i=1 (yi � f(xi))
2 be minimal.
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The �tted curve of X on Y

We are looking for a function g : Y �! X = g(Y ). Let g(yi) the value taken by the

function g when Y = yi. The horizontal di¤erence between the point (xi; yi) of the

series and the curve is written "
0
i = xi � g(yi). The sum that must be made minimal is

in this case is
Pn

i=1 "
02
i =

Pn
i=1 (xi � g(yi))

2 :

Remarque 3.2.1 The least squares method provides two curves of �t for a given sta-

tistical series. The two curves are all the closer to each other as the dispersion of the

points is low.

Linear �tting

When the shape of the point cloud leads to retaining the adjustment of a straight line,

we say that we are making a linear �tting.

The �tted line of Y on X

The �tted line has an equation of the form y = ax+b:We put byi = axi+b the estimated

value of yi by the linear model. The di¤erence between the point (xi; yi) of the cloud

and the line is then "i = yi � axi � b:
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We call the �tted line of Y on X or the regression line of Y on X , and we note it

DY=X , the line of equation y = ax+ b such that the sum
Pn

i=1 (yi � byi)2 is minimal.
To �nd the optimal line in the sense of least squares, it is necessary to �nd the coe¢ cients

a (slope) and b (intercept).

Note

�(a; b) =
nX
i=1

(yi � byi)2 = nX
i=1

(yi � axi � b)2

To �nd the optimal line, we must solve the system of partial derivatives of the �rst

order 8><>:
@�(a;b)
@a

= 0

@�(a;b)
@b

= 0

which gives

8><>:
Pn

i=1�2xi (yi � axi � b) = 0Pn
i=1�2 (yi � axi � b) = 0

()

8><>:
Pn

i=1 xiyi � a
Pn

i=1 x
2
i � b

Pn
i=1 xi = 0Pn

i=1 yi � a
Pn

i=1 xi � nb = 0

The solution to this system of equations is given by

a =
Cov(X; Y )

V ar(X)

b = Y � aX

The �tted line of X on Y

The �tted line has an equation of the form x = a0y + b0: We put bxi = a0yi + b0 the

estimated value of xi by the linear model. The di¤erence between the point (xi; yi) of

the cloud and the line is then "
0
i = xi � a0yi � b0:

We call the �tted line of X on Y or the regression line of X on Y , and we note it
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DX=Y , the line of equation x = a0y + b0 such that the sum
Pn

i=1 (xi � bxi)2 is minimal.
To �nd the optimal line in the sense of least squares, it is necessary to �nd the coe¢ cients

a (slope) and b (intercept).

Note

 (a0; b0) =

nX
i=1

(xi � bxi)2 = nX
i=1

(xi � a0yi � b0)
2

The values of a0 and b0 are given by

a0 =
Cov(X;Y )

V ar(Y )

b = X � a0Y

Remarque 3.2.2 � The two regression lines DY=X and DX=Y are generally dis-

tinct. They intersect at the center of gravity G(X; Y ) of the cloud. The two

slopes a and a0 always have the same sign, that of the covariance.

� To draw the two regression lines on the same graph, we write DX=Y as follows :

DX=Y : y =
x

a0
� b0

a0

� When the two variables and are independent, the two regression lines DY=X and

DX=Y are perpendicular and therefore aa0 = 0.

� When the variables X and Y are functionally related, the two regression lines

coincide and therefore aa0 = a 1
a
= 1

� In general , 0 � aa0 � 1.

Example. (Ungrouped Data) Research is carried out on the speed of propagation of
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nerve impulses in a nerve �ber. We denote by X the diameter in microns of nerve �bers

and Y the speed in meters per second of the nerve impulse in the �ber of diameter X.

The results are given in the table below

X 2.3 3 3.6 4.3 5 5.7 6.7 6.8 8 8.8 9.7 11 12.4 13.4 14.3 14.7

Y 16 12 18 28 28 38 30 44 50 54 54 72 56 76 72 76

We give
Pn

i=1 xi = 129:7,
Pn

i=1 yi = 724,
Pn

i=1 x
2
i = 1304:79,

Pn
i=1 y

2
i = 39960,Pn

i=1 xiyi = 7165:4:

1. Represent the scatterplot associated with this double statistical series.

2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

80

2. Calculate the means of each of the variables X and Y .

X =
1

16

nX
i=1

xi =
129:7

16
= 8: 106 3

Y =
1

16

nX
i=1

yi =
724

16
= 45: 25
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3. Calculate the variances of each of the variables.

�2X =
1

16

nX
i=1

x2i �X
2
=
1304:79

16
� (8: 106 3)2 = 15: 837

�2Y =
1

16

nX
i=1

y2i � Y
2
=
39960

16
� (45: 25)2 = 449: 94

4. Calculate the covariance between X and Y

Cov(X; Y ) =
1

16

nX
i=1

xiyi �X:Y =
7165:4

16
� 8: 106 3� 45: 25 = 81: 027

5. Find the equations of the regression lines of Y on X and of X on Y .

a =
Cov(X;Y )

V ar(X)
=
81: 027

15: 837
= 5: 116 3

b = Y � aX = 45: 25� 5: 116 3� 8: 106 3 = 3: 775 7

which gives

DY=X : y = 5: 116 3x+ 3: 775 7:

Also, for DX=Y we have

a0 =
Cov(X; Y )

V ar(Y )
=
81: 027

449: 94
= 0:180 08

b = X � a0Y = 8: 106 3� 0:180 08� 45: 25 = �0:042 32

and

DX=Y : x = 0:180 08y � 0:042 32:

6. Draw the two regression lines



CHAPTER 3. TWO WAYS STATISTICS 85

2 4 6 8 10 12 14 16
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i
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D
Y/X

D
X/Y

If we look for the diameter of a nerve �ber through which the nerve impulse would

propagate at the speed of 100m=s then we use the regression lines DX=Y to predict its

value

x = 0:180 08� 100� 0:042 32 = 17: 966 microns

and to determine the speed of the nerve impulse through a nerve �ber with a diameter

of 18 microns, we use the regression lines DY=X

y = 5: 116 3� 18 + 3: 775 7 = 95: 869m=s

Example. (Grouped Data) The table below represents the distribution of 28 students

according to the annual number of absences (X) and the �nal grade (Y ).

XnY [0,5[ [5,10[ [10,15[ [15,20[

0 2 3 3 0

1 0 1 2 3

2 0 0 1 1

3 4 3 0 0

4 1 0 4 0
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Give the equation of the regression lines of Y on X and that of X on Y .

xinyi 2.5 7.5 12.5 17.5 ni: ni:xi ni:x
2
i

0 2j n11x1y1 = 0 3j 0 3j 0 0j 0 8 0 0

1 0j 0 1j 7:5 2j 25 3j 52:5 6 6 6

2 0j 0 0j 0 1j 25 1j 35 2 4 8

3 4j 30 3j 67:5 0j 0 0j 0 7 21 63

4 1j 10 0j 0 4j 200 0j 0 5 20 80

n:j 7 7 10 4 28
P
= 51

P
= 157

n:jyj 17.5 52.5 125 70
P
= 265

n:jy
2
j 43.75 393.75 1562.5 1225

P
= 3225

X = 1
28

P
ni:xi = 1:8214 Y = 1

28

P
n:jyj = 9:4642

�2X =
1
28

P
ni:x

2
i �X

2
= 2:289541 �2Y =

1
28

P
n:jy

2
j � Y

2
= 25:60587

Cov(X; Y ) = 1
28

PP
nijxiyj �X:Y = �1:077806:

We obtain a = Cov(X;Y )

�2X
= �0:470752 and b = Y � aX = 10:321731; thus

DY=X : y = �0:470752x+ 10:321731:

Also a0 = Cov(X;Y )

�2Y
= �0:04209215 and b0 = X � a0Y = 2:219801;

DX=Y : x = �0:04209215y + 2:219801:

Residual variance and explained variance by a regression line

Fitted line of Y on X:

The quality of the adjustment is even better than the sum of the squares of the residuals

(or deviations) between the line and the points of the series is small.



CHAPTER 3. TWO WAYS STATISTICS 87

� We call residual variance of Y or residual variance of DY=X , and we note VR(Y ) ,

the following expression

VR(Y ) =
1

n

nX
i=1

(yi � byi)2
� We call variance explained by the regression line DY=X , and we note VE(Y ) , the

expression de�ned by

VE(Y ) =
1

n

nX
i=1

(byi � Y )2:

Properties.

� V ar(Y ) = VR(Y ) + VE(Y ):

� VE(Y ) =
Cov(X;Y )2

V ar(X)
= V ar(Y )�(X; Y )2:

� VR(Y ) = V ar(Y )(1� �(X; Y )2):

Coe¢ cient of determination

We call the coe¢ cient of determination the quantity R2 de�ned by

R2 =
VE(Y )

V ar(Y )
=

VE(X)

V ar(X)

The coe¢ cient of determination R2 summarizes the part of the variance explained by

the regression lines. It is a unitless number, between 0 and 1. It can be expressed as

a percentage (percentage that the explained variance represents in relation to the total

variance).
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From V ar(Y ) = VR(Y ) + VE(Y ); we have

R2 = 1� VR(Y )

V ar(Y )
= 1� VR(X)

V ar(X)
:

R2 is close to 1 if the points of the cloud are little dispersed around the regression line,

it is close to 0 otherwise.

Example. from the previous example of nerve impulse propagation speed in a nerve

�ber and diameter of a nerve �ber, we compute the coe¢ cient of correlation

�(X; Y ) =
Cov(X; Y )

�X�Y
=

81:02969p
15:83809

p
449:9375

= 0:9598794:

Calculate the residual variance of Y and the variance explained by the line DY=X

VR(Y ) = V ar(Y )(1� �(X; Y )2) = 35:37928;

VE(Y ) = V ar(Y )�(X; Y )2 = 414:5582:

then we calculate the coe¢ cient of determination

R2 =
VE(Y )

V ar(Y )
=
414:5582

449:9375
= 0:921 37

The regression lines explain 92.13% of the variance (of X and Y) which gives that the

goodness of �t is very good.
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Probability

Often in life we are confronted by our own ignorance. Whether we are pondering

tonight�s tra¢ c jam, tomorrow�s weather, next week�s stock prices, an upcoming elec-

tion, or where we left our hat, often we do not know an outcome with certainty. Instead,

we are forced to guess, to estimate, to hedge our bets.

Probability is the science of uncertainty. It provides precise mathematical rules for

understanding and analyzing our own ignorance. It does not tell us tomorrow�s weather

or next week�s stock prices; rather, it gives us a framework for working with our limited

knowledge and for making sensible decisions based on what we do and do not know.

To say there is a 40% chance of rain tomorrow is not to know tomorrow�s weather.

Rather, it is to know what we do not know about tomorrow�s weather.

In this chapter, we will develop a more precise understanding of what it means to say

there is a 40% chance of rain tomorrow. We will learn how to work with ideas of

randomness, probability, expected value, prediction, estimation, etc., in ways that are

89



CHAPTER 4. PROBABILITY 90

sensible and mathematically clear.

At the beginning of the twentieth century, Russians such as Andrei AndreyevichMarkov,

Andrey Nikolayevich Kolmogorov, and Pafnuty L. Chebyshev (and American Norbert

Wiener) developed a more formal mathematical theory of probability. In the 1950s,

Americans William Feller and Joe Doob wrote important books about the mathemat-

ics of probability theory. They popularized the subject in the western world, both as an

important area of pure mathematics and as having important applications in physics,

chemistry, and later in computer science, economics, and �nance. Probability theory

also plays a key role in many important applications of science and technology. For

example, the design of a nuclear reactor must be such that the escape of radioactivity

into the environment is an extremely rare event. Of course, we would like to say that

it is categorically impossible for this to ever happen, but reactors are complicated sys-

tems, built up from many interconnected subsystems, each of which we know will fail

to function properly at some time. Furthermore, we can never de�nitely say that a nat-

ural event like an earthquake cannot occur that would damage the reactor su¢ ciently

to allow an emission. The best we can do is try to quantify our uncertainty concerning

the failures of reactor components or the occurrence of natural events that would lead

to such an event. This is where probability enters the picture. Using probability as a

tool to deal with the uncertainties, the reactor can be designed to ensure that an unac-

ceptable emission has an extremely small probability � say, once in a billion years� of

occurring.

In this Chapter we introduce the basic concepts underlying probability theory. We

begin with the sample space, which is the set of possible outcomes.
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4.1 Sample Spaces and Events

The sample space 
 is the set of possible outcomes of an experiment. Points ! in


 are called sample outcomes, realizations, or elements. Subsets of 
 are called

Events.

Example. If we toss a coin twice then 
 = fHH;HT; TH; TTg. The event that the

�rst toss is heads is A = fHH;HTg.

Example. Let ! be the outcome of a measurement of some physical quantity, for

example, temperature. Then 
 = R. One could argue that taking 
 = R is not

accurate since temperature has a lower bound. But there is usually no harm in taking

the sample space to be larger than needed. The event that the measurement is larger

than 10 but less than or equal to 23 is A =]10; 23].

Example. If we toss a coin forever, then the sample space is the in�nite set


 = f! = (!1; !2; !3; :::) : !i 2 fH;Tgg:

Let E be the event that the �rst head appears on the third toss. Then

E = f(!1; !2; !3; !4; :::; !i; :::) : !1 = !2 = T; !3 = H; 8i � 4; !i 2 fH;Tgg

Given an event A, let Ac = f! 2 
 : ! =2 Ag denote the complement of A. Informally,

Ac can be read as �not A.�The complement of 
 is the empty set ;. The union of

events A and B is de�ned

A [B = f! 2 
 : ! 2 A or ! 2 B or ! 2 bothg
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which can be thought of as �A or B.�If A1; A2; ::: is a sequence of sets then

[1i=1Ai = f! 2 
 : ! 2 Ai for at least one ig:

The intersection of A and B is

A \B = f! 2 
 : ! 2 A and ! 2 Bg

read �A and B.�Sometimes we write A\B as AB or (A;B). If A1; A2; ::: is a sequence

of sets then

\1i=1Ai = f! 2 
 : ! 2 Ai for all ig:

The set di¤erence is de�ned by

A�B = f! : ! 2 A; ! =2 Bg:

. If every element of A is also contained in B we write A � B or, equivalently,B � A:

If A is a �nite set, let jAj denote the number of elements in A. See the following table

for a summary.

The complement of A[B, namely, the set of elements that are in neither A nor B. So
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we immediately have

(A [B)c = Ac \Bc:

Similarly, we can show that

(A \B)c = Ac [Bc;

namely, the subset of elements that are not in both A and Bis given by the set of

elements not in A or not in B.

We say that A1; A2; ::: are disjoint or aremutually exclusive if Ai\Aj = ; whenever

i 6= j. For example, A1 = [0; 1[; A2 = [1; 2[; A3 = [2; 3[; ::: are disjoint. A partition

of 
 is a sequence of disjoint sets A1; A2; ::: such that [1i=1Ai = 
. Given an event A,

de�ne the indicator function of A by

IA(!) = I(! 2 A) =

8><>: 1 if ! 2 A

0 if ! =2 A

A sequence of sets A1; A2; ::: is monotone increasing if A1 � A2 ���� and we de�ne

limn�!1An = [1i=1Ai. A sequence of sets A1; A2; ::: is monotone decreasing if A1 �

A2 ���� and then we de�ne limn�!1An = \1i=1Ai. In either case, we will write An ! A.

Example. Let 
 = R and let Ai = [0; 1
i
[ for i = 1; 2; :::: Then [1i=1Ai = [0; 1] and

\1i=1Ai = f0g: If instead we de�ne Ai =]0; 1i [ then [
1
i=1Ai =]0; 1[ and \1i=1Ai = ;:

4.2 Probability

We will assign a real number P (A) to every event A, called the probability of A. We

also call P a probability distribution or a probability measure. To qualify as a

probability, P must satisfy three axioms:
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Axiom 1 : 8A; P (A) � 0

Axiom 2 : P (
) = 1

Axiom 3 : If A1; A2; ::: are disjoint then P ([1i=1Ai) =
P1

i=1 P (Ai)

There are many interpretations of P (A). The two common interpretations are fre-

quencies and degrees of beliefs. In the frequency interpretation, P (A) is the long run

proportion of times that A is true in repetitions. For example, if we say that the prob-

ability of heads is 1=2, we mean that if we �ip the coin many times then the proportion

of times we get heads tends to 1=2 as the number of tosses increases. An in�nitely

long, unpredictable sequence of tosses whose limiting proportion tends to a constant

is an idealization, much like the idea of a straight line in geometry. The degree-of-

belief interpretation is that P (A) measures an observer�s strength of belief that A is

true. In either interpretation, we require that Axioms 1 to 3 hold. The di¤erence in

interpretation will not matter much until we deal with statistical inference. There,

the di¤ering interpretations lead to two schools of inference: the frequentist and the

Bayesian schools.

One can derive many properties of P from the axioms, such as

P (;) = 0

A � B =) P (A) � P (B)

0 � P (A) � 1

P (Ac) = 1� P (A)

A \B = ; =) P (A [B) = P (A) + P (B)

We have the following basic theorem that allows us to decompose the calculation of the

probability of B into the sum of the probabilities of the sets Ai \ B. Often these are
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easier to compute.

Theorem 4.2.1 (Law of total probability, unconditioned version) Let A1; A2; :::

be events that form a partition of the sample space S. Let B be any event. Then

P (B) = P (A1 \B) + P (A2 \B) + ���:

Proof. The events (A1 \B); (A2 \B); :::are disjoint, and their union is B. Hence, the

result follows immediately from the additivity property.

Suppose now that A and B are two events such that A contains B (in symbols, A � B).

In words, all outcomes in B are also in A. Intuitively, A is a �larger�event than B, so

we would expect its probability to be larger. We have the following result.

Theorem 4.2.2 Let A and B be two events with A � B. Then

P (A) = P (B) + P (A \Bc):

Proof. We can write A = B [ (A \ Bc), where B and A \ Bc are disjoint. Hence,

P (A) = P (B) + P (A \Bc) by additivity.

A less obvious property is given in the following theorem.

Theorem 4.2.3 (Principle of inclusion�exclusion, two-event version) For any

events A and B,

P (A [B) = P (A) + P (B)� P (A \B):

Proof. Write A [ B = (A \ Bc) [ (A \ B) [ (Ac \ B) and note that these events are

disjoint. Hence, making repeated use of the fact that P is additive for disjoint events,
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we see that

P (A [B) = P ((A \Bc) [ (A \B) [ (Ac \B))

= P (A \Bc) + P (A \B) + P (Ac \B)

= P (A \Bc) + P (A \B) + P (Ac \B) + P (A \B)� P (A \B)

= P ((A \Bc) [ (A \B)| {z }
=A

) + P ((Ac \B) [ (A \B)| {z }
=B

)� P (A \B)

= P (A) + P (B)� P (A \B):

Example. Two coin tosses. Let H1 be the event that heads occurs on toss 1 and let

H2 be the event that heads occurs on toss 2. If all outcomes are equally likely, then

P (H1 [H2) = P (H1) + P (H2)� P (H1 \H2) =
1
2
+ 1

2
� 1

4
= 3

4
.

Theorem 4.2.4 (Continuity of Probabilities) If An �! A then

P (An) �! P (A) as n �!1:

Proof. Suppose that An is monotone increasing so that A1 � A2 ���� . Let A =

limn�!1An = [1i=1Ai. De�ne B1 = A1; B2 = f! 2 
 : ! 2 A2; ! =2 A1g; B3 =

f! 2 
 : ! 2 A3; ! =2 A1; ! =2 A2g; :::It can be shown that B1; B2; ::: are disjoint,

8n;An = [ni=1Ai = [ni=1Bi and [1i=1Ai = [1i=1Bi: From Axiom 3,

P (An) = P ([ni=1Bi) =
nX
i=1

P (Bi)
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and hence, using Axiom 3 again,

lim
n�!1

P (An) = lim
n�!1

nX
i=1

P (Bi) =

1X
i=1

P (Bi) = P ([1i=1B) = P (A)

Sometimes we do not need to evaluate the probability content of a union; we need only

know it is bounded above by the sum of the probabilities of the individual events. This

is called subadditivity.

Theorem 4.2.5 (Subadditivity) Let A1; A2; ::: be a �nite or countably in�nite se-

quence of events, not necessarily disjoint. Then

P (A1 [ A2 [ ���) � P (A1) + P (A2) + ���

4.3 Probability on Finite Sample Spaces

Suppose that the sample space 
 = f!1; :::; !ng is �nite. For example, if we toss a die

twice, then 
 has 36 elements: 
 = f(i; j); i; j 2 f1; :::6gg. If each outcome is equally

likely, then P (A) = jAj
36
where jAj denotes the number of elements in A. The probability

that the sum of the dice is 11 is 2
36
since there are two outcomes that correspond to

this event.

If 
 is �nite and if each outcome is equally likely, then

P (A) =
jAj
j
j

which is called the uniform probability distribution.

Example. Suppose now that we �ip three di¤erent fair coins. The outcome can be
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written as a sequence of three letters, with each letter being H (for heads) or T (for

tails). Thus, 
 = fHHH;HHT;HTH;HTT; THH; THT; TTH; TTTg:Here j
j = 8,

and each of the events is equally likely. Hence, P (fHHHg) = 1=8; P (fHHH;TTTg) =

2=8 = 1=4, etc. Note also that, by additivity, we have, for example, that P(exactly two

heads) = P (fHHT;HTH; THHg) = 1=8 + 1=8 + 1=8 = 3=8, etc.

To compute probabilities, we need to count the number of points in an eventA. Methods

for counting points are called combinatorial methods. We needn�t delve into these in

any great detail. We will, however, need a few facts from counting theory that will

be useful later. Given n objects, the number of ways of ordering these objects is

n! = n(n� 1)(n� 2):::3:2:1:For convenience, we de�ne 0! = 1. We also de�ne

Ckn =

0B@ n

k

1CA =
n!

k!(n� k)!

read �n choose k�, which is the number of distinct ways of choosing k objects from n.

For example, if we have a class of 20 people and we want to select a committee of 3

students, then there are

0B@ 20

3

1CA =
20!

3!17!
=
20� 19� 18
3� 2� 1 = 1140

possible committees. We note the following properties:

0B@ n

0

1CA =

0B@ n

n

1CA = 1 and

0B@ n

k

1CA =

0B@ n

n� k

1CA
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4.4 Independent Events

If we �ip a fair coin twice, then the probability of two heads is 1
2
� 1

2
. We multiply the

probabilities because we regard the two tosses as independent. The formal de�nition

of independence is as follows:

Dé�nition 4.4.1 Two events A and B are independent if

P (A \B) = P (A)P (B)

and we write AqB. A set of events fAi : i 2 Ig is independent if

P (\i2JAi) =
Y
i2J

P (Ai)

for every �nite subset J of I.

Independence can arise in two distinct ways. Sometimes, we explicitly assume that

two events are independent. For example, in tossing a coin twice, we usually assume

the tosses are independent which re�ects the fact that the coin has no memory of

the �rst toss. In other instances, we derive independence by verifying that P (A \

B) = P (A)P (B) holds. For example, in tossing a fair die, let A = f2; 4; 6g and let

B = f1; 2; 3; 4g. Then, A \ B = f2; 4g, P (A \ B) = 2=6 = P (A)P (B) = (1=2)� (2=3)

and so A and B are independent. In this case, we didn�t assume that A and B are

independent � it just turned out that they were.

Suppose that A and B are disjoint events, each with positive probability. Can they be

independent? No. This follows since P (A)P (B) > 0 yet P (A \B) = P (;) = 0:
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Example. Toss a fair coin 10 times. Let A =�at least one head.�Let Tj be the event

that tails occurs on the jth toss. Then

P (A) = 1� P (Ac)

= 1� P (all tails)

= 1� P (T1 \ T2 \ � � � \ T10)

= 1� P (T1)P (T2)� � � P (T10) using independence

= 1�
�
1

2

�10
t 0:999

Example. Two people take turns trying to sink a basketball into a net. Person 1

succeeds with probability 1=3 while person 2 succeeds with probability 1=4. What is

the probability that person 1 succeeds before person 2?

Let E denote the event of interest. Let Aj be the event that the �rst success is by

person 1 and that it occurs on trial number j. Note that A1; A2; ::: are disjoint and that

E = [1j=1Aj: Hence,

P (E) =
1X
j=1

P (Aj)

Now, P (A1) = 1=3. A2 occurs if we have the sequence person 1 misses, person 2

misses, person 1 succeeds. This has probability P (A2) = (2=3)(3=4)(1=3) = (1=2)(1=3).

Following this logic we see that P (Aj) = (1=2)j�1(1=3): Hence,

P (E) =

1X
j=1

�
1

2

�j�1
1

3
=
1

3

1X
j=1

�
1

2

�j�1
=
1

3

1

1� 1
2

=
2

3
:

Here we used that fact that, if 0 < r < 1 then
P1

j=k r
j = rk

1�r .
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4.5 Conditional Probability

Assuming that P (B) > 0, we de�ne the conditional probability of A given that B has

occurred as follows:

Dé�nition 4.5.1 If P(B) > 0 then the conditional probability of A given B is

P (AjB) = P (A \B)
P (B)

:

Think of P (AjB) as the fraction of times A occurs among those in which B occurs.

For any �xed B such that P (B) > 0, P (�jB) is a probability (i.e., it satis�es the three

axioms of probability). In particular, P (AjB) � 0, P (
jB) = 1 and if A1; A2; :::

are disjoint then P ([1i=1AijB) =
P1

i=1 P (AijB). But it is in general not true that

P (AjB [ C) = P (AjB) + P (AjC). The rules of probability apply to events on the left

of the bar.

In general it is not the case that P (AjB) = P (BjA). People get this confused all

the time. For example, the probability of spots given you have measles is 1 but the

probability that you have measles given that you have spots is not 1. In this case, the

di¤erence between P (AjB) and P (BjA) is obvious but there are cases where it is less

obvious.

Example. A medical test for a disease D has outcomes + and �. The probabilities

are:

D Dc

+ 0:009 0:099

� 0:001 0:891

From the de�nition of conditional probability,
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P (+jD) = P (+ \D)
P (D)

=
0:009

0:009 + :001
= 0:9

and

P (�jDc) = P (� \Dc)

P (Dc)
=

0:891

0:891 + 0:099
� 0:9:

Apparently, the test is fairly accurate. Sick people yield a positive 90 percent of the

time and healthy people yield a negative about 90 percent of the time.

Suppose you go for a test and get a positive. What is the probability you have the

disease? Most people answer 0:9. The correct answer is

P (Dj+) = P (+ \D)
P (+)

=
0:009

0:009 + 0:099
� 0:08:

The lesson here is that you need to compute the answer numerically. Don�t trust your

intuition.

Proposition 4.5.1 (Compound probability formula) Let n events A1; :::; An be

such that P (A1 \ ::: \ An) 6= 0. Then

P (A1 \ ::: \ An) = P (A1)P (A2jA1)P (A3jA1 \ A2):::P (AnjA1 \ A2::: \ An�1):

Example. An urn initially contains 7 black balls and 3 white balls. We successively

draw 3 balls: if we draw a black one, we remove it, if we draw a white one, we remove

it, and we add a black one instead. What is the probability of drawing 3 blanks in a

row?
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We denote by Bithe event "The i-th ball drawn is white". The desired probability is

P (B1 \B2 \B3) = P (B1)P (B2jB1)P (B3jB1 \B2):

Clearly, P (B1) = 3=10. Now, if B1 is made, before the 2nd draw, the urn consists of

8 black and 2 white balls. We therefore have: P (B2jB1) = 2=10. If B1 and B2 are

made, before the 3rd draw, the urn consists of 9 black balls and 1 white. We deduce

P (B3jB1 \B2) = 1=10. Finally P (B1 \B2 \B3) = 6=1000 = 3=500:

4.6 Bayes�Theorem

First, we need a preliminary result. This formula makes it possible to calculate the

probability of an event B by breaking it down according to a complete system of events

(Indeed, B is equal to the disjoint union of B \ An)

Theorem 4.6.1 (The Law of Total Probability) Let A1; :::; Ak be a partition of 
.

Then, for any event B,

P (B) =
kX
i=1

P (BjAi)P (Ai):

Proof. De�ne Cj = B \ Aj and note that C1; :::; Ck are disjoint and that B = [kj=1Cj

. Hence,

P (B) = P ([kj=1Cj) =
kX
j=1

P (B \ Aj) =
kX
j=1

P (BjAj)P (Aj)

since P (B \ Aj) = P (BjAj)P (Aj) from the de�nition of conditional probability.

Theorem 4.6.2 (Bayes�Theorem) Let A1; :::; Ak be a partition of 
 such that P (Ai) >
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0 for each i. If P (B) > 0 then, for each i = 1; :::; k,

P (AijB) =
P (BjAi)P (Ai)Pk
j=1 P (BjAj)P (Aj)

:

Proof. We apply the de�nition of conditional probability twice, followed by the law of

total probability:

P (AijB) =
P (Ai \B)
P (B)

=
P (BjAi)P (Ai)

P (B)
=

P (BjAi)P (Ai)Pk
j=1 P (BjAj)P (Aj)

:

Example. We divide emails into three categories: A1 = �spam,�A2 =�low priority�

and A3 = �high priority.�From previous experience we �nd that P (A1) = 0:7, P (A2) =

0:2 and P (A3) = 0:1. Of course, 0:7 + 0:2 + 0:1 = 1. Let B be the event that the

email contains the word �free�. From previous experience, P (BjA1) = 0:9; P (BjA2) =

0:01; P (BjA3) = 0:01. (Note: 0:9+0:01+0:01 6= 1). We receive an email with the word

�free�. What is the probability that it is spam?

Bayes�theorem yields,

P (A1jB) =
0:9� 0:7

(0:9� 0:7) + (0:01� 0:2) + (:001� 0:1) = 0:995:

4.7 Random Variables and Distribution

In previous sections, we discussed the probability model as the central object of study

in the theory of probability. This required de�ning a probability measure P on a class

of subsets of the sample space 
. It turns out that there are simpler ways of presenting

a particular probability assignment than this � ways that are much more convenient
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to work with than P. This section is concerned with the de�nitions of random variables,

distribution functions, probability functions, and the development of the concepts nec-

essary for carrying out calculations for a probability model using these entities. This

section also discusses the concept of the conditional distribution of one random vari-

able, given the values of others. Conditional distributions of random variables provide

the framework for discussing what it means to say that variables are related, which is

important in many applications of probability and statistics.

4.7.1 Random Variables

The previous sections explained how to construct probability models, including a sample

space 
 and a probability measure P . Once we have a probability model, we may de�ne

random variables for that probability model.

Intuitively, a random variable assigns a numerical value to each possible outcome in

the sample space. For example, if the sample space is {rain, snow, clear}, then we

might de�ne a random variable X such that X = 3 if it rains, X = 6 if it snows, and

X = �2:7 if it is clear.

More formally, we have the following de�nition.

Dé�nition 4.7.1 A random variable is a function from the sample space 
 to the set

R of all real numbers that assigns a real number X(!) to each outcome !.

X : 
 �! R

! 7�! X(!) = x
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The random variable described above could be written formally as X :{rain, snow,

clear} ! R by X(rain)= 3; X(snow)= 6; and X(clear) = �2:7. We will return to this

example below.

We now present several further examples. The point is, we can de�ne random variables

any way we like, as long as they are functions from the sample space to R:

Example. If the sample space corresponds to �ipping three di¤erent coins, then we

could let X be the total number of heads showing, let Y be the total number of tails

showing, let Z = 0 if there is exactly one head, and otherwise Z = 17, etc.

Example. If the sample space corresponds to rolling two fair dice, then we could let X

be the square of the number showing on the �rst die, let Y be the square of the number

showing on the second die, let Z be the sum of the two numbers showing, let W be

thesquare of the sum of the two numbers showing, let R be the sum of the squares of

the two numbers showing, etc.

Example. (Constants as Random Variables) As a special case, every constant value c

is also a random variable, by saying that c(!) = c for all ! 2 
. Thus, 5 is a random

variable, as is 3 or �21:6.

Example. (Indicator Functions) One special kind of random variable is worth men-

tioning. If A is any event, then we can de�ne the indicator function of A, written IA,

to be the random variable

IA(!) =

8><>: 1 ! 2 A

0 ! =2 A
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which is equal to 1 on A, and is equal to 0 on Ac.

Given random variables X and Y , we can perform the usual arithmetic operations on

them. Thus, for example, Z = X2 is another random variable, de�ned by Z(!) =

X2(!) = (X(!))2 = X(!) � X(!). Similarly, if W = XY 3, then W (!) = X(!) �

Y (!)� Y (!)� Y (!), etc. Also, if Z = X + Y , then Z(! = X(!) + Y (!), etc.

Example. Consider rolling a fair six-sided die, so that 
 = {1, 2, 3, 4, 5, 6}. Let X

be the number showing, so that X(!) = ! for ! 2 
. Let Y be three more than the

number showing, so that Y (!) = !+3. Let Z = X2+Y . Then Z(!) = X(!)2+Y (!) =

!2 + ! + 3. So Z(1) = 5; Z(2) = 9, etc.

We write X = Y to mean that X(!) = Y (!) for all ! 2 
. Similarly, we write X � Y

to mean that X(!) � Y (!) for all ! 2 
, and X � Y to mean that X(!) � Y (!) for

all ! 2 
. For example, we write X � c to mean that X(!) � c for all ! 2 
.

Example. Again consider rolling a fair six-sided die, with 
 = f1; 2; 3; 4; 5; 6g. For

! 2 
, let X(!) = !, and let Y = X + If6g. This means that

Y (!) = X(!) + If6g(!) =

8><>: ! ! � 5

7 ! = 6

If S is in�nite, then a random variable X can take on in�nitely many di¤erent values.

Example. If 
 = f1; 2; 3; :::g, if X is de�ned by X(!) = !2, then we always have

X � 1. But there is no largest value of X(!) because the value X(!) increases without

bound as ! !1. We shall call such a random variable an unbounded random variable.

This is pretty much the same as a statistical variable except that in the case of a

statistical variable one evaluates a realized behavior (average, etc) whereas in the case

of random variables one assumes a future behavior (In this case, we speak of expectation



CHAPTER 4. PROBABILITY 108

rather than average for example) or theoretical.

Random variables are used to model the outcome of a non-deterministic mechanism.

Dé�nition 4.7.2 A random variable (or r.v.) is a map X : 
! R. If X(
) is at most

countable, we say that X is a discrete r.v. otherwise we say that it is continuous.

Finally, suppose X is a random variable. We know that di¤erent states ! occur with

di¤erent probabilities. It follows that X(!) also takes di¤erent values with di¤erent

probabilities. These probabilities are called the distribution of X; we consider them

next.

4.7.2 Distributions of Random Variables

Because random variables are de�ned to be functions of the outcome !, and because

the outcome ! is assumed to be random (i.e., to take on di¤erent values with di¤erent

probabilities), it follows that the value of a random variable will itself be random (as

the name implies).

Speci�cally, if X is a random variable, then what is the probability that X will equal

some particular value x? Well, X = x precisely when the outcome ! is chosen such

that X(!) = x.

A random variable is totally de�ned by its law of probability and it is characterized by:

�the set of values it can take (its domain of de�nition);

�the probabilities attributed to each of the potentially taken values P (X = x).

In this case, the law of the random variable is the law of probability on the set of

possible values of X which assigns the probability P (X = x) to the singleton fxg.

Example. Let us again consider the random variable of the �rst example above,

where 
 = {rain, snow, clear}, and X is de�ned by X(rain)= 3, X(snow) = 6, and
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X(clear)= �2:7. Suppose further that the probability measure P is such that P (rain)

= 0:4, P (snow) = 0:15, and P (clear)= 0:45. Then clearly, X = 3 only when it rains,

X = 6 only when it snows, and X = �2:7 only when it is clear. Thus, P (X = 3) =

P (rain)= 0:4, P (X = 6) = P (snow)= 0:15, and P (X = �2:7) = P (clear)= 0:45. Also,

P (X = 17) = 0, and in fact P (X = x) = P (;) = 0 for all x =2 f3; 6;�2:7g. We can also

compute that

P (X 2 f3; 6g) = P (X = 3) + P (X = 6) = 0:4 + 0:15 = 0:55;

while

P (X < 5) = P (X = 3) + P (X = �2:7) = 0:4 + 0:45 = 0:85;

etc.

4.7.3 Distribution function

Dé�nition 4.7.3 (cumulative distribution function) The distribution function (CDF)

of an r.v. X is the map FX of R in [0; 1] de�ned by

FX(x) = P (X � x) = P (X�1(]�1; x]))

We are often interested in the cumulative probability. For example in the case of

probabilities over N:

P (X � n) = P (X = 0 or X = 1 or��� or X = n):
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Since the events are mutually exclusive, we obtain

P (X � n) =

nX
j=0

P (X = j):

We will see later that the CDF e¤ectively contains all the information about the random

variable. Sometimes we write the CDF as F instead of FX .

Example. Flip a fair coin twice and let X be the number of heads. Then P (X = 0) =

P (X = 2) = 1=4 and P (X = 1) = 1=2. The distribution function is

FX(x) =

8>>>>>>><>>>>>>>:

0 x < 0

1
4
0 � x < 1

3
4
1 � x < 2

1 x � 2

The CDF is shown in the above �gure. Although this example is simple, study it

carefully. CDF�s can be very confusing. Notice that the function is right continuous,

non-decreasing, and that it is de�ned for all x, even though the random variable only

takes values 0; 1; and 2. Do you see why FX(1:4) = 0:75?

The following result shows that the CDF completely determines the distribution of a

random variable.
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Theorem 4.7.1 Let X have CDF F and let Y have CDF G. If F (x) = G(x) for all

x, then P (X 2 A) = P (Y 2 A) for all A.

In fact, we say thet the two random variables X and Y are equal in distribution �

written X d
= Y � if FX(x) = FY (x) for all x and this does not mean that X and Y

are equal. Rather, it means that all probability statements about X and Y will be the

same. For example, suppose that P (X = 1) = P (X = �1) = 1=2. Let Y = �X. Then

P (Y = 1) = P (Y = �1) = 1=2 and so X d
= Y . But X and Y are not equal. In fact,

P (X = Y ) = 0.

Theorem 4.7.2 A function F mapping the real line to [0; 1] is a CDF for some prob-

ability P if and only if F satis�es the following three conditions:

(i) F is non-decreasing: x1 < x2 implies that F (x1) � F (x2).

(ii) F is normalized: limx!�1 F (x) = 0 and limx!1 F (x) = 1.

(iii) F is right-continuous: F (x) = F (x+) for all x, where F (x+) = lim
y
>!x
F (y).

Proof. (i) Since x1 < x2; then we have ]�1; x1] �]�1; x2] which gives

P (X 2]�1; x1]) � P (X 2]�1; x2])() F (x1) � F (x2)

(ii) Obvious

(iii) Suppose that F is a CDF. Let x be a real number and let y1; y2; ::: be a sequence

of real numbers such that y1 > y2 >��� and yi
>�!

i!1
x. Let Ai =] � 1; yi] and let

A =] �1; x]. Note that A = \1i=1Ai and also note that A1 � A2 ����. Because the

events are monotone, limi�!1 P (Ai) = P (\1i=1Ai). Thus,

F (x) = P (A) = P (\1i=1Ai) = lim
i�!1

P (Ai) = lim
i�!1

F (yi) = F (x+):
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Lemma 4.7.1 Let F be the CDF for a random variable X. Then:

(i) P (x1 < X � x2) = F (x2)� F (x1)

(ii) P (X > x) = 1� F (x):

Proof. (i) Take x1 < x2; then

P (X � x2) = P (X 2]�1; x2]) = P (fX 2]�1; x1]g [ fX 2]x1; x2]g)

= P (X 2]�1; x1]) + P (X 2]x1; x2])

= P (X � x1) + P (x1 < X � x2)

=) P (x1 < X � x2) = P (X � x2)� P (X � x1) = F (x2)� F (x1)

(ii) We replace x2 in (i) by 1.

4.7.4 Expectation and variance of a random variable

Average value of a random variable: Expectation

The intuitive idea of expectation has its origins in games of chance. Consider the

following game: a die is rolled. Suppose that for a bet of 1 euro, we win 1 euro if the

result obtained is even, 2 euros if the result is 1 or 3, and we lose 3 euros if the result

is 5. Is it interesting to play this game? What is the average gain?

Let X be the random variable corresponding to the number of euros won or lost. The

law of X is

x -3 1 2

P (X = x) 1/6 1/2 1/3
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The expected win, denoted E[X], is then E[X] = �3� 1=6 + 1� 1=2 + 2� 1=3 = 2=3.

The player therefore earns on average 2=3 euros for a bet of 1 euro.

An expectation operator is a function that assigns to each random variable X a real

number E[X] called the expectation or expected value of X.

Every expectation operator satis�es the following axioms.

Axiom E1 (Additivity). If X and Y are random variables, then X + Y is also a

random variable, and

E[X + Y ] = E[X] + E[Y ]:

Axiom E2 (Homogeneity). If X is random variable and a is a real number, then

aX is also a random variable, and

E[aX] = aE[X]:

These properties agree with either of the informal intuitions about expectations. Prices

are additive and homogeneous. The price of a gallon of milk and a box of cereal is the

sum of the prices of the two items separately. Also the price of three boxes of cereal is

three times the price of one box. (The notion of expectation as fair price doesn�t allow

for volume discounts.)

Axiom E3 (Positivity). If X is random variable, then X � 0 implies E[X] � 0.

The expression X � 0, written out in more detail, means

X(!) � 0; ! 2 
;

where 
 is the sample space. That is, X is always nonnegative. This axiom corresponds

to intuition about prices, since goods always have nonnegative value and prices are also
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nonnegative.

Dé�nition 4.7.4 The expectation of a random variable X is denoted E[X]. It repre-

sents the average value taken by the variable X.

1. If X is a discrete variable with values in D = fx1; :::; xng, its expectation is

E[X] = x1P (X = x1) + :::+ xnP (X = xn) =
nX
i=1

xiP (X = xi)

2. If X is a discrete variable with values in the in�nite set D = fxi : i � 1g, when

the sum is well de�ned, its expectation is

E[X] =
1X
i=1

xiP (X = xi)

When a variable X veri�es E[X] = 0, we say that the variable is centered.

Proposition 4.7.1 1. the expectation is linear: let a and b 2 R and two random

variables X and Y with �nite expectation then

E[aX + bY ] = aE[X] + bE[Y ]:

2. If X � Y then E[X] � E[Y ]:

The Multiplicativity Non-Property

One might suppose that there is a property analogous to the additivity property, except

with multiplication instead of addition

E[XY ] = E[X]E[Y ], Uncorrelated X and Y only!
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As the editorial comment says, this property does not hold in general. We will later see

that when it does hold we have a special name for this situation: we say the variables

X and Y are uncorrelated.

Taking a Function Outside an Expectation

Suppose g is a linear function de�ned by

g(x) = a+ bx; x 2 R;

where a and b are real numbers. Then

E[g(X)] = g(E[X]); Linear g only!

The reason for the editorial comment is that property does not hold for general functions

g, only for linear functions. Sometime you will be tempted to use it for a nonlinear

function g. Don�t! Remember that it is a �non-property.�

For example, you may be asked to calculate E[1=X] for some random variable X. The

�non-property�, if it were true, would allow to take the function outside the expectation

and the answer would be 1=E[X], but it isn�t true, and, in general

E[
1

X
] 6= 1

E[X]
:

4.7.5 Moments

If k is a positive integer, then the real number

�k = E[Xk]
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is called the k � th moment of the random variable X.

If p is a positive real number, then the real number

�p = E[jXjp]

is called the p� th absolute moment of the random variable X.

If k is a positive integer and � = E[X], then the real number

�k = E[(X � �)k]

is called the k � th central moment of the random variable X.

That�s not the whole story on moments. We can de�ne lots more, but all moments are

special cases of one of the two following concepts.

If k is a positive real number and a is any real number, then the real number E[(X�a)k]

is called the k� th moment about the point a of the random variable X. We introduce

no special symbol for this concept. Note that the k� th ordinary moment is the special

case a = 0 and the k � th central moment is the case a = �.

If p is a positive real number and a is any real number, then the real number E[jX�ajk]

is called the p� th absolute moment about the point a of the random variable X. Note

that the p� th absolute moment is the special case a = 0:

The �rst ordinary moment of a random variable X is also called the mean of X. It

is commonly denoted by the Greek letter �. Note that �1; �, and E[X] are di¤erent

notations for the same thing. We will use them all throughout the course.

When there are several random variables under discussion, we denote the mean of each

using the same Greek letter �, but add the variable as a subscript to distinguish them:

�X = E[X]; �Y = E[Y ], and so forth.
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Theorem 4.7.3 Suppose a real-valued random variable X is symmetric about the point

a. If the mean of X exists, it is equal to a. Every higher odd integer central moment

of X that exists is zero

In notation, the two assertions of the theorem are

E[X] = � = a

and

�2k+1 = E[(X � �)2k+1] = 0, for any positive integer k.

The proof is left as an exercise.

Second Moments and Variances

The preceding section says all that can be said in general about �rst moments. As we

shall now see, second moments are much more complicated.

The most important second moment is the second central moment, which also has a

special name. It is called the variance and is often denoted �2. We will see the reason

for the square presently. We also use the notation var(X) for the variance of X. So

�2 = �2 = var(X) = E[(X � �)2]:

As we did with means, when there are several random variables under discussion, we

denote the variance of each using the same Greek letter �, but add the variable as a

subscript to distinguish them: �2X = var(X), �2Y = var(Y ), and so forth.

Note that variance is just an expectation like any other, the expectation of the random

variable (X � �)2.
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Corollary 4.7.1 If X is a random variable having �rst and second moments, then

var(X) = E[X2]� E[X]2:

There are various ways of restating the corollary in symbols, for example

�2X = E[X2]� �2X

and

�2 = �2 � �21

As always, mathematics is invariant under changes of notation. The important thing

is the concepts symbolized rather than the symbols themselves.

Theorem 4.7.4 Suppose X is a random variable having �rst and second moments and

a and b are real numbers, then

var(a+ bX) = b2var(X)

Note that the right hand side does not involve the constant part a of the linear trans-

formation a+ bX. Also note that the b comes out squared.

The nonnegative square root of the variance is called the standard deviation. Conversely,

the variance is the square of the standard deviation. The symbol commonly used for

the standard deviation is �. That�s why the variance is usually denoted �2.

As with the mean and variance, we use subscripts to distinguish variables �X , �Y ,

and so forth.

It might have just occurred to you to ask why anyone would want two such closely re-
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lated concepts. Won�t one do? In fact more than one introductory (freshman level) sta-

tistics textbook does just that, speaking only of standard deviations, never of variances.

But for theoretical probability and statistics, this will not do. Standard deviations are

almost useless for theoretical purposes. The square root introduces nasty complications

into simple situations. So for theoretical purposes variance is the preferred concept.

In contrast, for all practical purposes standard deviation is the preferred concept, as

evidenced by the fact that introductory statistics textbooks that choose to use only one

of the two concepts invariably choose standard deviation. The reason has to do with

units of measurement and measurement scales. Suppose we have a random variable

X whose units of measurement are inches, for example, the height of a student in the

class. What are the units of E[X], var(X), and �X , assuming these quantities exist?
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