
Linux Course 1

💻
Linux Course
Index

Introduction Page 2

Simple Commands Page 9

Create a Man Page Page 12

Linux Administration Page 14

File System Page 19

Partitions and Inodes Page 29

Processes Page 36

Linux Boot Sequence Page 46

Bash Shell Scripting Page 50

AWK Command Page 69

ALL Linux Commands Page 71

Regex…………. Page 76

Linux Course 2

Lecture 1 & 2
Linux Concepts and Distributions:

� Linux Main Distributions:

Red Hat

Debian (e.g., Kali for security, Ubuntu, Mint for educational purposes)

SUSE

� Linux Basics:

Linux is a Unix-like operating system.

It is free and open-source software.

Operating system System software Familiar with Unix, data processing
capabilities, scripting languages (e.g., AWK, Make).

Kernel: Primary module of the OS.

� GNU/Linux:

GNU/Linux is an operating system, serving as a layer between hardware and
user-level applications.

Linux: Refers specifically to the kernel.

� OS Roles:

Hide hardware complexity and diversity.

Manage resources.

Provide isolation and protection for applications.

Multitasking: Ability to perform several tasks simultaneously.

� Main OS Features 5 A's):

Help/Assistance: Provide support and guidance to users.

Abstraction: Hide complexity through a unified interface API.

Augmentation: Improve performance, extend resources virtually, support
multitasking.

Arbitration: Resolve conflicts, allocate resources, ensure system reliability.

Authorization: Protect privacy, ensure system integrity, limit access to
resources for security.

� Linux Characteristics:

Unix-like OS assembled under the model of free and open-source software.

Distributions cater to different purposes.

Linux Course 3

� WHO/WHEN

Linus Torvalds: Created Linux in 1991.

Richard Stallman: Developed GNU utilities in 1983.

In 1980, all software was proprietary.

� Advantages of Open Source Software:

Enables global collaboration and development.

Lower investment costs as software belongs to the community.

� Statistics:

67% of servers run Linux.

41.8% of known websites use Linux.

In 2020, 96% of the top 1 million websites were powered by Linux.

In 2022, 91.5% of the top 500 supercomputers use Linux.

84% of enterprise businesses run Linux.

58% of IoT devices run Linux, facing challenges in power and security.

83% of the software industry uses Linux as the primary OS.

Modern smartphones and devices like Android phones, Amazon Kindle, and
smart TVs use the Linux kernel, with Android being a framework built on top of
it.

Why Linux:

� Free and Open Source:

Linux is free to use and distribute, and its source code is openly
accessible, allowing for customization and collaboration.

� Powerful for Research Datacenters:

Widely deployed in research datacenters due to its powerful capabilities,
stability, and performance, making it suitable for handling complex
computational tasks and large datasets.

� Universal:

Linux is versatile and flexible, capable of running on various hardware
architectures and devices, from servers and desktop computers to
embedded systems and IoT devices.

� Personal Desktops & Phones:

Linux is a popular choice for personal desktops and phones, offering a
customizable and efficient operating system for everyday use.

Linux Course 4

� Community and Business Driven:

Linux development is driven by a vibrant community of developers and
organizations, collaborating to improve and evolve the operating system to
meet the needs of users across diverse industries and applications.

� Linux Distributions:

Linux
Distribution Year

Independence /
Base Usage Infos

Red Hat
Enterprise
Linux

2000 Independent/Fedora Servers,
Enterprise

 Most
commercially
popular Linux Dist.
Was Supported by
IBM in 2019. Uses
RPM/YUM for SW
install&managment.

Fedora Linux 1995 Independent
Personal,
Development

 Sponsored by
RHEL, Same as
CentOS (test-
ground for RH

OPEN SUSE
Linux 1994 Independent

Servers,
Enterprise

Debian Linux 1993 Independent

Personal,
Servers,
Development,
Stable

 Largest free SW
package collection.
Completly free.

Ubuntu Linux 2004 Based on Debian
Personal,
Servers,
Education

 Free and easy,
Many OS derived
from it.
Funded&Supported
by Canonical Ltd.

Linux Mint 2006 Based on Ubuntu
Personal,
Education For education.

N.B Linux distributions are customized versions of the Linux operating system,
comprising packages and applications with the Linux kernel. Many distributions are
based on or derived from others, allowing for diversity in features and configurations.

� Codecs:

Codecs are libraries needed for encoding & decoding videos.

� Classification:

Beginners:

Mint

Ubuntu

Linux Course 5

Beginners to Intermediate:

Fedora

OpenSUSE

Mageia Some post-installation needed)

Advanced:

Debian

RHEL

Arch Requires reading documentation and becoming comfortable with
command lines)

Experts:

Slackware

NixOS

Gentoo

Additional distro-specific knowledge required (e.g., compiling source code
depending on the use, not just installation)

� Packet Manger:

The package manager in Linux is a SW tool for managing software packages
installation, removal, and updates. It simplifies these tasks by automating the
process, making software management easier for users. Examples include APT
(Advanced Package Tool)/ DPKG Debian Package)} in Debian/Ubuntu, YUM
(Yellowdog Updater Modified) in Red Hat/CentOS, and DNF Dandified YUM in
Fedora.

� Distribution Choice Criteria:

There are no strict rules for selecting a specific Linux distribution.

Choose based on requirements, skills, and budget.

� Recommendation:

a� Red Hat Derived Distributions:

Recommended for Enterprise Large) size networks.

Examples include CentOS and Fedora.

b. Ubuntu Derived Distributions:

Recommended for Small/Midsize networks and personal use.

Examples include Linux Mint and Elementary OS.

Linux Course 6

Lecture 3
� GNU and Free Software Foundation FSF

GNU stands for "GNU's Not Unix," aiming to create a complete free software
system compatible with Unix.

FSF was founded in October 1985 by Richard M. Stallman to develop and raise
funds for GNU software.

� Main GNU Software:

Bash Shell)

 GCC C compiler)

GDB Debugger)

GIMP Image Manipulator)

Gnome Desktop Environment)

Emacs Text Editor)

Ghostscript and Ghostview (.ps files interpreter and graphical frontend)

GNU Photo Digital Cameras)

G C Compiler)

Octave Image Processing)

GNU SQL

Radius.

� Open Source and Licenses:

Open source software: In Richard Stallman POV; “Free-Software .ˮ grants users
the freedom to run, copy, distribute, change, and improve it. This is Theoric
Part)

Software licenses Pratical Part), like the GNU General Public License GPL,
govern the use or redistribution of software.

GPL ensures and governs freedom for users and requires modified source
code to be passed along, and not its use.

Copyleft requires any distribution to be published under the same name and
conditions.

Open source licenses include GNU GPLv3 {contaminating} , GNU LGPLv3 {not
attached}, Mozilla PL 2.0, MIT License.

Linux Course 7

License choice is a decision of the legal department and can be determined by
reverse engineering binary code.

� Shell:

Definition: The shell is a software component and a main part of Linux.

Interface: It acts as an interface between the user and the kernel OS.

Characteristics:

Command Line Interface CLI Not graphical; commands are typed using the
keyboard, without mouse interaction.

Examples: Bash Bourne Again Shell), Zsh Z Shell), Ksh Korn Shell).

Bash Bourne Again Shell):

Developed as the GNU version in 1977.

Named after its author, Stephen Bourne, an English computer scientist.

Derived from the original Unix shell, 'sh.'

Contains the most features and is the default shell in many Linux distributions.

Functionality:

Interprets commands and sends them to the operating system.

Provides built-in commands, programming control structures, and environment
variables.

Supports scripting with commands interpreted rather than compiled.

Environment Variables:

Pre-defined variables that can be manipulated within a script.

Multiple Shells:

Linux supports various shells such as Bash, csh, zsh, ksh.

MacOS defaults to zsh but can install other shells.

Understanding Bash allows users to adapt to other shells easily due to their
similarities. Bash checks syntax errors and executes commands once it confirms their
correctness.

5. Command:

Definition: A command is a software program that performs a specific task
when executed in the shell.

Creation: Users can create their own commands by writing code and calling it
in the shell.

Linux Course 8

Aliases: Users can customize existing commands by creating aliases, which
are alternative names for commands with specific options.

alias nickname = “commandˮ

Prompt Green Part in Mint):

Definition: The prompt is the part of the command line interface that
indicates the system is waiting for commands.

Components:

Username: Username of the current user.

Systemname: Name of the system.

Currentdirectory: Current working directory.

~: Represents the home directory.

$ Represents a normal (regular) user.

#: Represents the superuser.

[username@systemname ~]$|

Input:

Format: command --option argument.

Components:

Command: A program that performs one specific task.

Options: Modify the behavior of the command.

Short Form: Single dash followed by one letter (e.g., ls -a).

Long Form: Double dash followed by a word (e.g., ls --all).

Argument Parameters): Input/output that the command interacts with.

Execution:

Commands are small programs that perform one task well.

Root privileges can be attained without switching users using "sudo
command", which is preferred.

UNIX philosophy emphasizes the power of system relationships among
programs rather than individual programs.

Combining multiple commands can create powerful and useful tools.

; : to type multiple commands on one line.

\ : to split the commands accross multiple lines.

Linux Course 9

Lecture 4
� Commands:

whoami Display current user; name of login.

hostname Display system hostname; name of machine. You can open many
terminals in other machines)

echo "string" Print specified string.

echo -n : dosent output a newline at the end. (i.e: no endl)

echo $HOME Print user's home directory path; considered as an ENVIRONMENT
VARIABLE. $ sign to access its content.

export To make a shell environment variable.

export VAR_NAME = “*”

env : to view your environment variables.

echo my login is $(whoami) Print a string then replace whoami with its value
(user's login name.)

Without parenthesis : is used to execute a command and substitute its
output into a variable or another command. (here whoami is considered a
command, not a variable)

With parenthesis Execute the command and print the output in same line

date Display current date and time.

cal Display calendar.

google Bad command.

ps : display current running processes (running in the current terminal
session), snapshot in the command moment.

ps aux : a detailed list of all processes running on the system.

top : display current running processes, in real time.

ls : list files.

ls [A-Z]* : listing files starting with capital letters, + anything.

cd : change directory.

cd .. : change to parent directory.

cd / cd ~ : change current directory to home.

� Get Help:
Tools for learning about commands, e.g., working with date :

Linux Course 10

type date Show type of command. Shell built-in, Alias, Path of a file/sw)

date --help : “optionˮ help, provided by the developper. (-h abbr)

help date : “commandˮ help, for shell built-in commands only.

man date Manual for date command, it uses the less command.

For most executable programs intended for commandline use provide a
formal piece of documentation called a manual or a man page. A
special paging.

They do not usually include examples.

apropos date List commands related to date , used with keywords; it
basically search the manual pages for matches.

whatis date Brief description of date , in 1 line.

info date Provided by GNU, Alternative documentation to man for date .
They are hyperlinked.

N.B less is similar to cat .

 less : a command that allows reading text files

� Ways of scrolling in less :

space , f Page forward.

b Page backward.

< Go to first line of file.

> Go to last line of file.

/ Search forward (n to repeat).

? Search backward (N to repeat).

h Display help.

q Quit help.

It's important to remember essential options for commands like less , but you don't
need to memorize all options.

� Scripts:

a� Definition: A script is a set of commands assembled in a specific way,
functioning like a program.., it recieves user commands and executes them.

b� Example:

#!/bin/bash

if ["$1" == "h"]; then

Linux Course 11

 echo "Hello"

fi

if ["$1" == "b"]; then

 echo "Bye"

fi

#!/bin/bash at the beginning of a script indicates that the script should be
interpreted and executed using the Bash shell.

#! : shebang/hashbang

“$nˮ : to access nth argument passed to the script.

Execution:

To execute the script: ./test.sh in a bash shell.

To pass a parameter to a script: ./test.sh h .

The script prints "Hello" if "h" is specified as an argument.

The script prints "Bye" if "b" is specified as an argument.

A script is executed by invoking its file name preceded by ./ in a bash shell.
Parameters can be passed to the script, allowing it to perform specific actions
based on those parameters.

� How to create manual pages:

To create a manual page:

� Determine the type of manual page needed (e.g., general commands,
system calls, library functions).

� Use the roff markup language (troff, nroff are variants) to write the manual
page.

� Include commands (read markers) for various titles and sections:

TH Title heading (should be the first command).

SH Section heading.

B Bold text.

TP Information about an argument (flag) to the command.

BR Text in bold and normal Roman font.

Convention for Man Pages:

Man pages are created for various types of information:

� General commands manual

Linux Course 12

� System calls manual

� Library functions manual

� Kernel interfaces manual

� File formats manual

� Games manual

� Miscellaneous Information manual

� System manager's manual

� Kernel developer's manual

These conventions help standardize the creation and organization of manual
pages, making them easier to navigate and understand.

HOW

� Create a Text File test.1 :

.TH TEST.SH 1

.SH NAME

test.sh \- Print Hello or Bye

.SH SYNOPSIS

.B test.sh

[\-h]

[\-b]

.SH DESCRIPTION

.B test.sh

This is a simple script which performs two actions.

 It prints "Hello" or "Bye" based on the options provided.

.SH OPTIONS

.TP

.BR \-h

Print Hello

.TP

.BR \-b

Print Bye

Linux Course 13

For more information about manual page syntax, refer to the manual page
of the manual (man man).

Storage of Man Pages:

The system stores its man pages in /usr/share/man/ .

The directory /man/man1 specifically stores man pages for user shell
commands.

 Files with the .gz extension are compressed using the ZIP compression format.
To read them without decompressing, we can use the zcat command.

 It is recommended to store your own man pages in
/usr/ local /man to avoid conflicts with system-managed man pages located in
/usr/ share /man .

Lecture 5
N.B

man -k ... is equivalent to apropos ... ; keywords.

man -f ... is equivalent to whatis

If these commands do not behave as expected, it could be due to:

Different shell settings.

Different versions of man or apropos .

Presence of aliases.

Variations in the content of man files.

 Linux is highly customizable and modifications are safer compared to other
systems. However, becoming a root user in Linux requires experience, and there are
certifications available to become a Linux administrator.

Linux Course 14

� User Management:

User management ensures:

Secure access control.

Resource allocation.

System administration.

 Each user is associated with a user account, defining their identity and
privileges. Users can have different privileges, and multiple users can connect to
the same machine, even remotely.

� Types of Users:

a� Root Account Superuser):

Has complete control of the system.

Can run any command without restrictions.

Should be treated as a system administrator.

b� System Accounts:

Created by the system during installation.

Used to run system services and applications.

Modifications to these accounts could affect the system adversely.

c� User Accounts:

Created by the administrator.

Access the system and its resources based on permissions.

Provide interactive access to the system for users and groups.

Generally have limited access to system files and directories.

Additional Information:

Root account (# in the prompt) has all permissions.

But he canʼt know the passwords, for privacy; they are encrypted using
SHA

if you lost your password, you canʼt recover it, but the root can
create another password.

You can have many root account, but with different names.

System creates accounts when processes are launched.

Killing a process or deleting an account can provide insights into the
purpose of system accounts.

System accounts, privileges, etc., can be displayed and managed.

Linux Course 15

Linux is designed to manage different users efficiently.

Each user belongs to one group at least.

Challenges Faced:

Security.

Resource management.

Permissions management Privacy).

Interrupt handling.

Use of groups to manage privileges efficiently.

� Group user:

a� Definition:

Groups are collections of users, simplifying management of multiple users,
particularly regarding permissions.

b� Permissions:

Assigned to groups of users with identical permissions, organized into
logical groups.

Users in a group share the same permissions.

c� Management:

Groups can be modified, and users can be moved between groups.

Users can belong to multiple groups, with their permissions being the
combination of all group permissions.

d� Administrative Efficiency:

Admins can manage permissions for entire user groups, streamlining
permission management instead of handling individual user accounts.

� User properties:

a� Username:

Cannot start with a number or include spaces.

Policy defined by a regular expression.

b� UID User ID

First assigned as 1000, increments.

IDs 1000 are system accounts.

0 is root ID.

Linux Course 16

UID 1 or 4294967295 This is an invalid UID, often used to indicate no
user.

c� GIDs Group IDs):

Users can belong to different groups.

Similar characteristics to UID

0 is root GID, and so on…

d� Home Directory:

Default: /home/username/ .

Customizable.

e� Default Shell:

Shell can be changed.

f� Password:

Protects account to prevent unauthorized access.

� How user managment works:

a� Data Storage:

Linux stores user and group data in specific files and directories.

These files/directories contain:

 user account infos.

encrypted passwords.

group configurations.

b� File Contents:

/etc/passwd List of user accounts and corresponding info. Readable by
most users; only root and sudo accounts can modify. Also stores installed
packages.

ashref:x:1000:1000::/home:/bin/bash

/etc/group List of user groups, displaying group name, GID, and members.

/etc/sudoers Specifies users with elevated permissions (sudo command
usage).

/etc/shadow Stores encrypted user password info and related data.

/etc/gshadow Stores encrypted group password info and related data.

/etc/skel Contains default configuration scripts and templates copied to a
new user's home directory.

Linux Course 17

/etc/login.defs Contains system-wide user account policy settings.

c� Modification:

System administrators interact with these files to control and modify
user/group settings.

Users initially modified these files for permission changes, contributing to
the expertise of the root user.

Risk is involved in modifying these files, so caution is necessary.

 Understanding the structure and contents of these files/directories is essential
for effective user management in Linux.

� The commands to use:

a� id Display user and groups IDs.

Example: id usrnm

id -nG test_account : The -n and G options instruct id to only list group
names instead of numeric IDs.

b� finger Display detailed user information.

Example: finger usrnm

c� lslogins Display user information in Linux.

Example: lslogins -u

d� groups List user group membership.

Example: groups usrnm

e� getent Fetch user information from system database.

Example: getent passwd usrnm

f� grep Search for patterns or specific text in files.

Example: grep usrnm /etc/passwd

grep -i : case insensitive. / [xy] character class.

g� users List currently logged-in users on Linux.

Example: users

h� who Show information of currently logged-in users.

Example: who -u

i� cat List all users from /etc/passwd .

Example: cat /etc/passwd

j� last Show most recent login session.

Linux Course 18

Example: last

k� lastb Show failed login attempts.

Example: lastb

More managment:
Create User:

useradd Command to create a new user in Linux, requires root or sudo
privileges.

Example: sudo useradd test_account

No additional information needed.

adduser : Interactive command to create a new user.

Automatically creates a home directory, sets a default shell, and
prompts for a password.

Example: sudo adduser test_account

Check creation by verifying /etc/passwd (using cat , sed , awk or grep).

Modify Default User Settings:

usermod Modifies various attributes of an existing user account.

Options:

-d Change user's home directory.

-s Change user's shell.

-e Set expiry date.

-c Add comments to user entry.

-u Change user's ID.

-aG Add user to supplementary groups without removing existing
group membership.

-G : remove the user from a group.

Example: sudo usermod -d /var/acc2 acc2 (changes directory of user named
acc2 to /var/acc2.

Delete User:

userdel Removes a user from the /etc/passwd file.

Example: sudo userdel test_account

To remove all related files from system: sudo userdel -r test_account

Group Management:

Linux Course 19

addgroup Command to create a new group.

groupdel Command to delete a group.

Add User to Group: sudo adduser test_acc test_group

Remove User from Group: sudo deluser test_acc test_grp

These commands enable the creation, modification, and deletion of users and
groups in a Linux system.

Lecture 6
Linux File System Structure

� Introduction to Linux File System:

Unix philosophy: "Everything is a file; if something isn't a file, it's a process."

Concept of data processing in Computer Science.

� Organization of Data in Linux:

Data in Linux is organized in files.

Files are organized into directories.

Directories are organized into a tree-like structure.

� Unified Treatment of Files and Directories:

Linux, like Unix, makes no distinction between a file and a directory.

All types of data are treated as files in Linux.

Generally, all I/O devices are represented as files in Linux.

� Types of Files:

Regular(Ordinary) Files Contain data, text, program instructions, etc.

Directories Store both special and ordinary files. Equivalent to folders in
Windows/MacOS.

Special Files Provide access to hardware such as hard drives, CDs, modems,
Ethernet adapters, etc.

Links Aliases or Shortcuts) Enable accessing a single file using different
names.

Linux Course 20

� Listing Content of a Directory:

Command ls is used to list the content of a directory.

The ls command supports the l option to get more information about the
listed files.

Additional information provided by the l option includes:

The Honor Owner) The person who created the file. Not always accurate if
the creator belonged to another user).

An example of the output of ls -l with all the details of the numbers:

total 64

-rw-r--r-- 2 user group 4096 Mar 4 15:32 example.txt

In this example:

� File Type and Permissions:

rw-r--r-- This represents the permissions of the file. The first
character - indicates that it's a regular file. The following nine
characters (rw-r--r--) represent the permissions for the owner, group,
and others. In this example:

rw- Owner (user) has read and write permissions.

r-- Group (group) has read-only permission.

r-- Others have read-only permission.

The similarities between these permissions:

Linux Course 21

� Read (r Permission:

This permission allows users to view the contents of the
file. For a directory, it allows users to list the files within it.

� Write (w Permission:

This permission allows users to modify the contents of the
file. For a directory, it allows users to create, delete, or
rename files within it.

� Execute (x Permission:

This permission allows users to execute the file as a
program or script. For a directory, it allows users to access
files and subdirectories within it.

In summary, "rw-r--r--" means:

The owner of the file has read and write permissions.

The group associated with the file has read-only permission.

Others (users not in the owner group) have read-only
permission.

Directory permissions with t at the end; only the
owner can delete or rename files within that directory;
eventhough the directory is global writable. Sticky
Bit)

e.g.: drwxrwxrwt
� Number of Links:

2 This indicates the number of hard links to the file. In addition to the
original file itself, there is one more hard link pointing to the same
inode.

You can find @ indicating soft links, or | indicating named pipes.
at the end.

� Owner and Group:

user This is the owner of the file.

group This is the group associated with the file (only one).

� File Size:

4096 This represents the size of the file in bytes. For directories, this
number represents the size occupied by the directory entry itself, not
the size of its contents.

Linux Course 22

� Timestamp:

Mar 4 15:32 This represents the date and time the file was last
modified.

� File Name:

example.txt This is the name of the file.

� Total:

the total block count is 64, indicating that the listed files and directories
collectively use 64 blocks of storage on the disk.

� File types:

File types are represented by characters at the beginning of the output when you
list files using commands like ls -l . Here are the common file types and their
representations, FOUND AT THE BEGGINING when typing ls -l:

� Regular(Ordinary) file (-):

A regular file contains data or text. It can be a document, script, binary
executable, etc.

Represented by the hyphen (-) character.

� Directory (d):

A directory is a special type of file that contains other files and directories.

Represented by the letter "d".

� Special Files:

a� Symbolic link (l):

A symbolic link, also known as a symlink or soft link, is a special type
of file that points to another file or directory.

Represented by the letter "l".

b� Block special file (b):

A block special file represents a device that is accessed as a sequence
of blocks or chunks of data.

Represented by the letter "b".

c� Character special file (c):

A character special file represents a device that is accessed as a
stream of bytes or characters.

Represented by the letter "c".

d� Named pipe FIFO (p):

Linux Course 23

A named pipe, also known as a FIFO (first in, first out), is a special type
of file used for inter-process communication.

Represented by the letter "p".

e� Socket (s):

A socket is a special type of file used for inter-process communication
between processes on the same or different hosts.

Represented by the letter "s".

These file types provide information about the nature of the file and how it should
be interpreted or accessed by the operating system and applications. When you
use commands like ls -l , the first character in the file listing indicates the type of
file.

� Metacharcter:

Metacharacters Metacharacters are special characters in Unix-like systems
with predefined meanings.

� Wildcards:

Wildcards represent one or more characters in file and directory names.

Examples:

* Matches zero or more characters.

? Matches any single character.

[?-?] Matches any character within the specified range or set.

Usage:

* Matches zero or more characters.

Example: file* matches file1 , fileA , fileABC , etc.

? Matches a single character.

Example: file? matches file1 , fileA , but not file10 or
fileABC .

[-] :

Example: ls file[0-9].txt matches files like file1.txt ,
file2.txt , etc… until file9.txt .

� Redirection and Pipes:

Redirection and pipes are used to control input, output, and error streams,
and to chain commands together.

Examples:

> Redirects output to a file, overwriting its contents.

Linux Course 24

>> Redirects output to a file, appending to its contents.

< Redirects input from a file.

| Sends the output of one command as input to another command
(pipe).

� Escape Characters:

Escape characters are used to remove the special meaning of meta
characters.

Examples:

\ Escapes the following character, treating it as a literal character
rather than a meta character.

� Hidden Files:

Identification Hidden files in Unix-like systems start with a dot (.) character in
their filenames.

Visibility They are not displayed in directory listings by default, but can be
shown using the a option with the ls command (ls -a).

Purpose Hidden files are commonly used for configuration files or settings
that are not meant to be directly manipulated by users.

Example An example of a hidden file is .bashrc , which contains configurations
for the Bash shell.

� Permissions:

In Unix-like operating systems, every file has three sets of permissions:

Owner permissions: Determine what actions the owner of the file can perform
(read, write, execute).

Group permissions: Determine what actions members of the group associated
with the file can perform.

Other (world) permissions: Determine what actions users who are not the
owner or part of the group can perform.

let's consider a file named "example.txt" with the following permissions:

-rw-r--r--

In this example:

Owner permissions (rw-): The owner of the file has read and write
permissions.

Group permissions (r--) The group associated with the file has read-only
permission.

Linux Course 25

Other permissions (r--) Users who are not the owner nor part of the group
have read-only permission.

To change the file and the directory permissions:

The chmod command is used. There are two primary methods to modify
permissions with chmod :

� Symbolic Mode Uses symbols (+, -, =) to add, remove, or set
permissions for the owner, group, and others.

� Absolute Mode Uses numeric values 07 to explicitly set
permissions for the owner, group, and others.

a� Symbolic Mode Example:
To add execute permission for the owner, we use the command:

chmod u+x, g=rx, o-wx example.txt

u+x Adds execute permission for the owner.

g=rx Sets read and execute permissions for the group,
while removing any other permissions.

o-wx Removes write and execute permissions for others.

So, applying this command to the file "example.txt" would result
in the following permissions changes:

Owner permissions: Execute permission added.

Group permissions: Read and execute permissions set.

Other permissions: Write and execute permissions removed.

After running the command chmod u+x, g=rx, o-wx example.txt , the
permissions of "example.txt" would be modified accordingly.

The output of ls -l :

-rwxr-xr-- 1 <owner> <group> <date> example.

txt

b� Absolute Mode Example:
To set read and write permissions for the owner, and read-only
permissions for the group and others, we use the command:

chmod 743 example.txt

7 specifies permissions for the owner (user).

Linux Course 26

The binary representation of 7 is 111, indicating read 4
+ write 2 execute 1 permissions.

So, the owner (user) gets read, write, and execute
permissions.

4 specifies permissions for the group.

The binary representation of 4 is 100, indicating only
read 4 permission.

So, the group gets read-only permission.

3 specifies permissions for others.

The binary representation of 3 is 011, indicating write 2
+ execute 1 permissions.

So, others get write and execute permissions.

The output of ls -l :

-rwxr--wx 1 <owner> <group> <date> exampl

e.txt

First Digit Owner/User):

Represents the permissions for the owner (user)
of the file.

Each digit can be a combination of 0, 1, 2, 4, or
their sum:

0 No permissions.

1 Execute permission.

2 Write permission.

4 Read permission.

Example:

0 No permissions.

1 Execute permission.

2 Write permission.

3 Execute and write permissions.

4 Read permission.

5 Read and execute permissions.

6 Read and write permissions.

Linux Course 27

7 Read, write, and execute permissions.

Second Digit Group):

Represents the permissions for the group
associated with the file.

Same values as the first digit, representing
execute 1, write 2, and read 4 permissions.

Third Digit Others/World):

Represents the permissions for users who are
not the owner nor part of the group associated
with the file.

Same values as the first digit, representing
execute 1, write 2, and read 4 permissions.

OWNERSHIP:

chown Changes the owner of a file or directory.

chgrp Changes the group of a file or directory.

These commands are used in Unix-like systems to manage
ownership and group ownership of files and directories

� Linux file system Layout:

a� The Linux file system layout can be visualized as a tree structure, with the root
directory (/) serving as the trunk from which all other directories and files
branch out. Here's a brief overview of the layout and its key components:

1. Root Directory (/):

The starting point of the file system tree, indicated by a forward slash (/).

All other directories and files are organized beneath it.

Contains essential system directories and files, including:

/bin Essential executable binaries.

/etc Configuration files for system-wide settings.

/home User home directories; Primary hierarchy for user files.

/lib & /lib64 Shared libraries required by system binaries.

/usr Secondary hierarchy for user-related files and programs.

/dev Device files representing hardware devices.

/dev/null : a file that discards erros.

/boot Essential files for booting the system.

Linux Course 28

/lost+found Recovery directory for filesystem checks.

/mnt Common mount point for external filesystems.

/var Stores log files, variables…

� Root Directory vs. Root User Home Directory:

While the root directory (/) is the top-level directory in the file system tree,
the root user's home directory is located at /root .

The root user, also known as the superuser or administrator, has full
access and control over the entire file system.

� Tree Structure:

The file system layout follows a hierarchical tree structure, with directories
containing subdirectories and files.

Each directory serves as a branch in the tree, containing files and
subdirectories as its leaves.

Linux Course 29

/dev Directory:
Contains references to all CPU peripheral devices hardware.

Represented as files with special properties.

Essential for the OS and cannot be removed.

Contains device files corresponding to physical devices or system
components.

Device files serve as interfaces to device drivers.

/media Directory:
Standard mount point for removable media like CDs and floppies.

/mnt Directory:
Standard mount point.

Lecture 7
File System Reality - Partitions:
� Storage Organization:

Linux organizes storage as a set of partitions on the same disk.

Multiple partitions are used for higher data security in disaster scenarios.

Partitioning allows the disk to be treated as independent storage areas.

� Benefits of Partitions:

a� Data Security:

Partitioning enhances security by isolating data.

It reduces the risk of catastrophic loss during disasters.

b� Independent Storage Areas:

Partitions create distinct storage spaces.

This improves data organization and management.

c� Easier Backups:

Partitioned disks facilitate individual backup and restoration processes.

This simplifies data management.

d� Problem Isolation:

Partitions confine issues to specific areas.

It aids in troubleshooting and system maintenance.

Linux Course 30

e� Avoiding Interference Many OSs):

Partitioning prevents conflicts between multiple operating systems.

It allocates dedicated spaces for each OS's files.

� Types of Partitions on Linux:

a� Data Partition:

Contains normal Linux system data.

Includes the root partition necessary for system startup and operation.

b� Swap Partition:

Acts as an extension of the computer's physical memory.

Provides additional memory space on the hard disk.

� Partition Management:

Setting Partition Type:

Tools like fdisk are used to set the partition type during system
installation, view and manage it.

Division of Hard Disks:

Determined by the system administrator based on system requirements
and usage scenarios.

More:

df :displays information about disk space usage on mounted filesystems. It
shows the amount of space used, available, and total space on each
filesystem.

du : provides disk space usage information for files and directories.

� Pages:

Definition:

Pages are fixed-size blocks of memory used for virtual memory
management.

Purpose:

Divides virtual memory into uniform units, facilitating efficient memory
allocation and storage.

Key Functions:

Enables address translation, memory allocation, and handling of page
faults.

Optimizes memory usage and system performance

Linux Course 31

� INODE

Inode A serial number containing information about the actual data comprising
the file, its ownership, and its location.

Contains metadata about the file, such as its permissions, timestamps, and
size.

Stores the physical location of the file data on the disk.

Each file is associated with one inode.

Created during disk initialization, with a fixed number of inodes per partition,
determining the maximum number of files that can exist on the partition.

Typically, there's 1 inode per 2 to 8 KB of storage.

Inode Table example:

Inode Number
File/Directory
Name Metadata Location

1 file1.txt
Permissions: rw-r--r--
Size: 1024 bytes

Disk Block: 1024
2047

2 dir1
Permissions: rwxr-xr-x
Size: 4096 bytes

Disk Block: 2048
6143

3 file2.jpg
Permissions: rw-rw-r--
Size: 2048 bytes

Disk Block: 6144
8191

4 file3.docx
Permissions: rw-rw----
Size: 3072 bytes

Disk Block: 8192
11263

5 dir2
Permissions: rwxr-xr-x
Size: 8192 bytes

Disk Block: 11264
19455

� Inode Content:

File permissions

Number of links to that file

Owner user and group

File size

File type (regular, directory)

Last modification time

File or directory name

Date and time of creation, last read and change

An address defining the actual location of the file

Additional Details:

Inodes contain all file metadata except for file names and directories.

Linux Course 32

File names and directories are stored in special directory files.

The system correlates file names with inode numbers to create a user-friendly
tree structure.

Inode numbers ID not number of inodes) can be displayed using the ls -i
command.

Inodes have dedicated space on the disk.

Example Output:

ashref@ash:~$ ls -i

1234 file1.txt

5678 file2.txt

91011 file3.txt

RESULT

The ls -il command provides detailed information about files including their
inode numbers. Here's an example output:

ashref@ash:~$ ls -il

total 248

1234 -rw-r--r-- 1 user user 1024 Jan 1 12:00 file1.txt

5678 -rw-r--r-- 1 user user 2048 Jan 1 12:00 file2.txt

91011 -rw-r--r-- 1 user user 4096 Jan 1 12:00 file3.txt

� Inode Uniqueness:
Files in different partitions can have the same inode number, other than that, each
inode has a specific number ID

� Filesystem Identification:
 Use the
df filename command to determine the partition where a file is stored.

� THE PATH

a� Absolute Path:
Full path starting from the root directory. Make no assumptions about the
current working directory. Begins with the root directory
/ . Example: /usr/share/aclocal/pkg.m4

b� Relative Path:
Path relative to the current working directory. Specifies the location of a file or
directory in relation to the current working directory. Example:
../dir/file.txt

Linux Course 33

11. Linking Files:
A link is a way of
associating multiple file names with the same set of file data, creating a shortcut
or alias to access the same file content using different names. There are two types
of links:

Hard Links:
Directly point to the same inode and share the same file data.

Symbolic Links Soft Links):
Pointers to the file name and can cross file system boundaries. Symbolic links,
or soft links, are files that act as pointers to other files or directories using a
symbolic path reference. They are more flexible than hard links but can break
if the target file is moved or deleted.

Hard Links:

Point directly to the data (inode) of the original file.

Changes to the original changes all hard links.

Cannot span different file systems.

Canʼt point to directories.

Syntax: ln target link(name)

Example: ln file1.txt ~/file2.txt

This creates a hard link named file2.txt in home directory pointing to
the same inode as file1.txt .

Symbolic Links:

Point to the path of the target file.

Deleting or moving the original file breaks the symbolic link.

Can span different file systems.

Syntax: ln -s target linkname

Example: ln -s /path/to/target /path/to/link

This creates a symbolic link named link pointing to the file or directory
target .

Example Scenario:

Use hard links when you need multiple references to the same file, like
organizing files or creating backups.

Linux Course 34

Use symbolic links when you want a flexible way to reference files across
directories or file systems, such as linking configuration files or providing
access to files from multiple locations.

Mounting:
� What is Mounting?

Mounting is the process of connecting or attaching a storage device, like a
USB drive or a network share, to your computer's existing filesystem. It's
like making the contents of that device accessible to your computer's file
system.

� Why Do We Need to Mount?

Your computer's filesystem has a specific structure, like folders and
directories. When you connect a new storage device, your computer needs
to know where to put its files. By mounting the device, you tell your
computer where to incorporate the files from that device into its existing
file system structure.

� How Does It Work?

When you mount a device, you're essentially telling your computer to treat
the files on that device as part of its own files. You specify where these
new files should appear in your existing file system structure.

� Example:

Let's say you plug in a USB drive. Your computer doesn't automatically
show its files because it doesn't know where to put them. By mounting the
USB drive, you're telling your computer to make those files accessible. It's
like opening a drawer and placing files inside it.

� Unmounting:

When you're done with the storage device, you need to unmount it before
physically disconnecting it. This is like closing the drawer before taking it
out. It ensures that all the files are safely stored and that you don't lose any
data.

This is equivalent to ejecting a storage device in Windows. Both
processes ensure data integrity by completing all pending read/write
operations before safe removal.

Quota:
Think of quotas as limits set on how much of a particular resource a user or group
can consume on a system. In simple terms, it's like putting a cap on how much of
something someone can use, done by the administrators.

Linux Course 35

� Resource Limits:

Quotas are used to control and limit the amount of resources, such as disk
space or file count, that a user or a group of users can consume on a
system.

� Types of Quotas:

Disk Quotas: These limit the amount of disk space a user or group can use
on a filesystem.

File Quotas: These limit the number of files a user or group can create on
a filesystem.

� Why Use Quotas?

Quotas help in resource management and prevent users from
monopolizing system resources.

They ensure fair usage of resources among multiple users, preventing one
user from using up all available space.

The /etc/fstab file (short for filesystem table) is a configuration
file used by Linux operating systems to define how filesystems
should be mounted and managed during system boot. While it
is not directly related to disk quotas, it plays a crucial role in
mounting filesystems with quota support enabled

⇒ Example of /etc/fstab entry:

/dev/sda1 /home ext4 defaults,usrquota,grpquota 0 2

A breakdown of each component:

� /dev/sda1 :

Specifies the device or UUID representing the filesystem to be mounted.

� /home :

Specifies the directory in the filesystem hierarchy where the filesystem
should be mounted.

/home is the mount point.

� ext4 :

Specifies the type of filesystem present on the device.

Indicates that the filesystem is of the ext4 type.

� defaults,usrquota,grpquota :

Linux Course 36

Mount options for the filesystem, separated by commas.

defaults Includes default mount options provided by the system.

usrquota Enables user disk quotas on the filesystem.

grpquota Enables group disk quotas on the filesystem.

� 0 :

Indicates whether the filesystem should be included in the dump backup
utility.

A value of 0 means the filesystem will not be backed up by dump .

� 2 :

Determines the order in which filesystems should be checked by the fsck
filesystem consistency checker during system boot.

A value of 2 means the filesystem should be checked after filesystems
with a dump flag of 1 .

Lecture 8
Processes:

A program is a binary executable file, and a process is an instance of a running
program.

Multiple instances of processes from the same program CAN run simultaneously.

In UNIX, each process must have a parent process, forming a hierarchical
structure.

Each process is identified by a unique Process ID PID, typically a 5-digit number.

Process Management:
Competition:

Or : Multiple users running multiple commands simultaneously on the same
system.

Measures are necessary for CPU management and process switching to
handle this competition efficiently, Done by the OS.

Processes must continue to run even after the user who initiated them has logged
out.

Types of Processes:
� Interactive Processes:

Initiated and controlled through a terminal session where a user is connected
and started them.

Linux Course 37

� Automatic Batch) Processes:

Not connected to a terminal.

Tasks can be queued into a spooler area for execution on a FIFO basis.

Scheduled to run at a certain date and time using the at command.

Scheduled to run when the total system load is low enough to accept extra
jobs using the batch command.

� Daemons:

Started when the system boots and executed continuously in the background.

Examples include:

HTTPD (web server daemon)

SSHD Secure Shell daemon)

MySQLD MySQL database daemon)

Daemons usually have names ending with 'd'.

Main Process States:
� Running R

Indicates that the process is currently executing on the CPU.

� Sleeping S

Indicates that the process is waiting for an event to complete. This event could
be waiting for user input or for system resources to become available.

� Stopped/Traced T

This state indicates that the process has been stopped, usually by receiving a
signal. For example, during program debugging, a user may stop a process to
inspect its current state.

� Zombie Z

A terminated process that has finished execution but still has an entry in the
process table, Also known as the situation where the child is there even
though the parent process is killed. If a process remains in the zombie state for
too long, it can consume system resources. Restarting the system may be
necessary if the program needs to be run again. This state is considered
abnormal.

Unkillable; because their parents are missing lol.

� Dead X

Indicates a terminated process. This can occur if the process was killed or if it
reached the last line of its source code.

Linux Course 38

N.B If the parent process is in the Dead X state, all of its child processes are
(must be) terminated as well.

Example:
When running ps l to display processes and their states, the STAT column
indicates the current state of each process, Here is an example :

ashref@mint:~$ ps l

PID UID PPID PGID SID TTY STAT TIME COMMAND

1234 1000 567 1234 1234 tty1 S 00:05:00 bash

1 1000 0 567 567 tty1 S 00:10:00 init

890 1000 1234 890 1234 tty1 R 01:20:00 brave

init (systemd nowadays): short for initialization; the first process to start
during system boot and has a process ID PID of 1.

Process States Diagram:

Explanation :

� Admitted Creation):

When a process is created, the operating system allocates necessary
resources such as memory, assigns a unique Process ID PID, and
initializes process control blocks.

The process is added to the system's process table and enters the
"Admitted" state.

Linux Course 39

From here, the process moves to the "Ready" state when it's ready to
execute.

� Dispatched Ready to Running):

In the "Ready" state, the process waits in the ready queue for the CPU to
become available.

When the scheduler selects the process for execution, it transitions to the
"Running" state.

The process's instructions are executed on the CPU, and it begins its task.

� Interrupted:

During execution Running), various events may occur that interrupt the
process.

These events can include:

 The expiration of the process's time slice.

Hardware interrupts.

The arrival of a higher-priority process.

……

When an interrupt occurs, the process temporarily halts its execution and
transitions to an appropriate state, such as "Blocked" or "Ready."

� I/O or Event) Wait:

While executing, a process may need to wait for input/output operations
I/O to complete or for certain events to occur.

When waiting for I/O or events, the process transitions to the
"Waiting(Blocked)" state.

The process is removed from the CPU's execution queue and waits for the
I/O operation or event to finish.

� I/O or Event) Completion:

When the I/O operation or event the process is waiting for completes, the
process transitions back to the "Ready" state.

If the process has the highest priority among the ready processes, it may
be immediately dispatched onto the CPU.

Otherwise, it waits in the ready queue until the scheduler selects it for
execution.

� Exit Terminated):

Linux Course 40

When a process completes its task or explicitly terminates, it transitions to
the "Exit" state.

The operating system releases all resources associated with the process,
including memory and system resources.

The process's entry is removed from the system's process table, and it is
no longer part of the system

Ending Processes:
When a process ends normally, it returns an exit status to its parent process,
indicating the outcome of its execution.

This exit status is a numerical value, similar to the return value of the main
function in programming.

The practice of returning information upon job completion originates from the
C programming language, upon which UNIX is built.

Processes can also terminate due to receiving signals, which can be initiated
using commands like kill .

Or by exiting; using _exit() system call, to free up the used resources.

Signals offer a means of communication and control between processes and
the operating system, allowing actions such as graceful termination or
handling exceptional conditions.

When a child process ends in Linux, its parent process acknowledges the
termination using the wait() system call to retrieve the child's termination
status.

If the parent process dies before its child process:

� The child process becomes orphaned Which is the normal situation,
Zombie is abnormal).

� The orphaned child is adopted by the init process (process ID 1.

� Init becomes the new parent of the orphaned child.

� Init handles the cleanup of resources associated with the orphaned child.

� The orphaned child continues execution under the supervision of the init
process.

Process Attributes:
A process has several attributes, which can be viewed using the ps command:

PID Process ID Unique identifier assigned to each process.

Linux Course 41

PPID Parent PID ID of the parent process that spawned the current
process.

Nice Number: Represents the degree of friendliness of the process
towards other processes, influencing scheduling.

Terminal / TTY Terminal to which the process is connected, if any.

Username: The user who owns the process.

Primary Group: The primary group of the user who started the process.

Terminals:

N.B the terminal isnʼt a process, so all the processes started
within the terminal are supervised by thier parent process
which is “The Shellˮ inside that terminal window.

Types of Terminals:

� Regular Terminal Devices TTY

Native terminal devices for direct user interaction.

Examples include physical terminals, virtual consoles, and terminal
emulators.

Users can input commands and receive output directly from the system.

� Pseudoterminal Devices PTS

Virtual terminal devices emulating terminal behavior.

Commonly used for remote login sessions SSH, terminal multiplexers
(tmux, screen), and inter-process communication.

Provide a programmable terminal-like interface for processes.

💡 Processes are usually bound to terminals for interaction.

Means, if that process needs an input, or displays an output, this will be done in
that terminal; Closing that terminal Killing that process Not all processes are
bound to terminals tho).

Printing a message from a terminal to another

� Determine the terminal device of the target terminal where you want to
print the phrase. You can find this information by running the ps command
in the target terminal. For example:

Linux Course 42

ashref@kali:~$ ps

PTD TTY TIME CMD

1234 pts/0 00:00:00 bash

1237 pts/1 00:00:00 bash

This will display the name of the terminal device, such as "/dev/tty1" or
"/dev/pts/0".

� Once you have the terminal device name, you can use the echo command
to write the desired phrase to that terminal. For example, if the terminal
device is "/dev/tty1", you can run:

ashref@kali:~$ echo "Your phrase here" > /dev/pts1

This will print your phrase in the other terminal.

 The /dev directory contains special files representing hardware devices
and pseudo-devices.

Lecture 9
fork() , exec() , and other related functions are key system calls in Unix-like operating
systems, including Linux, used for process management. Here's a an explanation of
each:

� fork():

Creates a new process (child) as a copy of the calling process (parent).

Returns different values to parent and child processes.

Child inherits attributes from the parent process.

Usage

� Call fork() to create a new child process.Check the return value:If it's
negative, an error occurred.If it's zero, you're in the child process.If it's
positive (i.e. the child's PID, you're in the parent process.

#include <unistd.h>

#include <stdio.h>

int main() {

 pid_t pid = fork();

 if (pid == -1) {

 // Error handling

 } else if (pid == 0) {

 // Child process

 } else {

Linux Course 43

 // Parent process

 }

 return 0;

}

� exec()

Replaces the current process image with a new one.

Various variants like execl() , execv() , etc., with different parameter types.

Used to run a new program in the context of the current process.

Usage

� After forking, call one of the exec() functions in the child process to
replace the current process image with a new one.

#include <unistd.h>

int main() {

 pid_t pid = fork();

 if (pid == -1) {

 // Error handling

 } else if (pid == 0) {

 // Child process

 // Example: execute ls command

 execl("/bin/ls", "ls", "-l", NULL);

 } else {

 // Parent process

 }

 return 0;

}

� wait():

Parent process waits for child process termination.

Retrieves termination status and exit code of child process.

Allows for synchronization between parent and child processes.

Usage

� In the parent process, call wait() to wait for the child process to
terminate.This allows the parent to synchronize with the child and
retrieve its termination status.

#include <sys/wait.h>

#include <stdio.h>

Linux Course 44

int main() {

 pid_t pid = fork();

 if (pid == -1) {

 // Error handling

 } else if (pid == 0) {

 // Child process

 } else {

 // Parent process

 int status;

 wait(&status);

 if (WIFEXITED(status)) {

 printf("Child process terminated with exit

status: %d\n", WEXITSTATUS(status));

 }

 }

 return 0;

}

� exit():

Terminates the calling process.

Cleans up resources and exits with a specified exit status.

Typically called by processes when they complete execution.

Usage

� Call exit() to terminate the current process.

#include <stdlib.h>int main() {

 exit(0); // Terminate with exit status 0

}

Process Scheduling:
� Automatic Processes:

Start automatically without user intervention.

Examples: system services, daemons; those that the computer needs to do its
work.

� Manual Processes:

Started manually by users, typically through command-line or GUI.

Examples: running applications, executing scripts.

Linux Course 45

3.Scheduled Processes with cron :

Time-based job scheduler.

Automates tasks at predefined intervals or times.

Configured using cron configuration files or user-specific crontab files.

Two types of cron:

� crond:

The cron daemon (crond) is a background process that runs
continuously and is responsible for scheduling and executing cron
jobs.

The cron daemon checks these files periodically (every minute) to
determine when to execute scheduled tasks.

� crontab:

The crontab command is a utility used to create, modify, and manage
cron jobs for individual users.

Users can use the crontab command to edit their personal crontab files,
which contain their scheduled tasks.

Users can list existing cron jobs, add new ones, or remove existing
ones using crontab commands.

Example (exam):

ashref@kali:~$ cat /etc/crontab

/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the `cron

command to install the new version when you edit this fi

and files in /etc/cron.d. These files also have username

that none of the other crontabs do.

SHELL=/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/

Example of job definition:

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .---------- day of month (1 - 31)

| | | .------- month (1 - 12) OR jan,feb,mar,apr ...

| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR

| | | | |

* * * * * username command to be executed

Linux Course 46

Run the backup script every day at 2:00 AM

0 2 * * * root /path/to/backup.sh

Run the cleanup script every Sunday at midnight

0 0 * * 0 root /path/to/cleanup.sh

To do so :

Open the crontab editor:

crontab -e

Add the line (e.g.: to run the script every day at midnight):

0 0 * * * /path/to/script.sh

Save and exit the editor.

Linux Boot Sequence

Overview
When the computer boots, the kernel is started.

The kernel initiates the first process, typically the init process (pid 1.

The init process is responsible for managing all other processes.

In Linux process management, there exists a parent-child relationship between
processes.

The boot sequence in Linux involves several stages, starting from “the BIOS POSTˮ
and ending with the “initialization of the init processˮ, which is typically managed by
systemd in modern distributions.

BIOS Overview
Definition The BIOS Basic Input Output System) is firmware stored in ROM
(Read-Only Memory) on the motherboard ⇒ cannot be modified.

Function It initializes the computer system after it is powered on, managing data
flow between the OS and attached devices like HDDs, keyboards, printers…

Uploaded by the manufacturer onto a chip on the motherboard.

Linux Course 47

It's considered firmware, providing low-level control of computing device
hardware.

1. BIOS POST (BIOS Power On Self Test)
During this initial stage of the boot process:

The BIOS runs a POST Power-On Self Test) to verify that all hardware
components are functioning correctly.

If the POST test fails, the computer may not be operable, and the boot process will
halt.

To access the BIOS settings, users typically press one of the function keys (e.g.,
F2, F10 depending on the machine during the boot process.

Summary of Modifiable Parameters in BIOS

Boot Order Determines the sequence in which devices are checked for bootable
operating systems.

System Time and Date Allows users to set the system clock.

CPU Settings Enables adjustments to CPU parameters such as clock speed and
power management settings.

Device Configurations Provides options to configure attached devices like HDDs,
SSDs, optical drives, etc.

BIOS Password A crucial parameter for security, it restricts access to BIOS
settings and is stored in a small chip next to the BIOS on the motherboard.

Although we stated earlier that the BIOS isn't modifiable, the idea
of changing parameters in the BIOS might seem puzzling. This is
because these parameters are stored in a separate chip near the
CPU, powered by a small battery called the CMOS Battery.

2. Boot Loader
After a successful POST test, the boot process moves to the Boot Loader stage:

a� The BIOS loads and executes the boot code from the boot device, typically located
in the first sector of the hard disk.

b� The boot loader presents the user with a boot screen, often offering multiple
options to boot into various operating systems installed on the machine.

c� Once the user selects an option from the boot screen, the corresponding kernel is
loaded into memory.

A well-known example of a boot loader is GRUB2 GRand Unified Bootloader
Version 2.

Linux Course 48

3. Kernel Initialization
After the boot loader loads the kernel into memory, the Kernel Initialization stage
begins.

The kernel is started, and it initializes various system components and drivers
required for the functioning of the operating system.

Hardware components such as the CPU, memory, storage devices, and
input/output devices are identified and initialized during this stage.

4. init Process (systemd)
In modern Linux distributions, the init process typically calls the systemd daemon.

systemd is responsible for:

Mounting file systems

Starting and managing system services

To check if systemd is the init process:

ashref@kali:~$ ls -l /sbin/init

If systemd is used, there will be a pointer to /lib/systemd/system .

Linux Course 49

Additional Notes
Important Starting processes in Linux can be managed using commands such as
kill , nice , renice , top , from lab4.

Linux Course 50

Lecture 10

Bash Shell Scripting

A Bash script is a file containing a sequence of commands
executed by the Bash program line by line. It allows for performing
series of actions, such as navigating to a specific directory,
creating folders, and launching processes using the command
line. Unlike traditional programming languages, there's no need for
compilation; instead, the Bash shell interprets the script directly.

Advantages:
Automation: Automates system administration tasks, managing system
resources, and performing routine operations, thereby saving time and
reducing the risk of manual errors.

Portability: Shell scripts can run on various platforms and operating systems,
including Unix, Linux, MacOS, and even Windows through emulators or virtual
machines.

Flexibility: Highly customizable and easily modifiable to suit specific
requirements.

Accessibility: Can be edited using any text editor, and most operating systems
have built-in shell interpreters.

Integration: Can be integrated with other tools and applications, such as
databases, web servers, and cloud services, enabling more complex
automation.

Debugging: Easy to debug with built-in debuggers available in most shells.

Script Naming Conventions:
A Bash script is a text file with a .sh extension, although scripts can run fine
without it.

Adding the Shebang:

#!/bin/bash

The Bash script starts with a shebang, a commented line (starting with #), indicating
the path to the Bash interpreter.

Linux Course 51

Example Script:

#!/bin/bash

Print the current date

echo "Current date is: $(date)"

Prompt the user to enter the path of a directory

echo "Enter the path of a directory:"

read pathtodir

Print files and folders in the specified directory

echo "Files and folders in $pathtodir are:"

ls -l "$pathtodir"

Ensure the script has executable permissions:

chmod u+x name.sh

To Execute the Script:

./name.sh

Alternatively, you can execute it using:

sh name.sh

or

bash name.sh

Comments:

In Bash scripting, comments are lines that begin with a # symbol. These lines are
ignored by the interpreter and are solely for human readers.

Comments are incredibly helpful for documenting code, explaining its functionality,
and making it easier for others to understand.

It's considered a best practice to include comments in your code, especially in
complex scripts or when collaborating with others.

#A Comment, will be ignored by the interpreter

Note Consider Adding them in the Exam !

Linux Course 52

Variables and Data Types in Bash
Variables in Bash allow for storing and manipulating data throughout a script.

Unlike some languages, Bash doesn't have strict data types; Variables can store
numeric values, individual characters, or strings of characters.

Usage:

� Direct Assignment:

school="ENSIA"

� Assignment Based on Another Variable:

school_var= $school

 N.B. Comparing between Bash Shell Programming and General programming ainʼt
that fair

Variable Access:

In Bash scripting, accessing variable values is essential. There are two common
forms:

� $var Simply references the value of the variable var .

� ${var} Allows for more controlled parsing:

Useful for concatenating variables with other strings without introducing white
spaces.

Example: If A="World" , then echo "Hello, ${A}!" delimits the variable name A
from ! .

Used for parameter expansion, such as substring extraction or length
calculation.

Example: ${A:0:3} extracts the first three characters from string A .

Better use the braces {}.

Variable naming conventions :
� Alphanumeric Characters Variable names can consist of letters, numbers, and

underscores.

� Start with a Letter or Underscore Variable names must begin with a letter or an
underscore.

Linux Course 53

� Case-Sensitive: var and VAR would be treated as different variables.

� Avoid Special Characters: such as spaces, punctuation marks, or arithmetic
operators (-) in variable names.

� Avoid Bash Keywords: e.g., if , while , do as variable names.

� Descriptive and Meaningful Choose descriptive and meaningful names that
reflect the purpose of the variable.

� Uppercase Convention for Constants Conventionally, uppercase variable names
are used for constants or variables with values that should not change during the
script execution.

� Lowercase or CamelCase for Regular Variables Regular variables are typically
named using lowercase letters or camelCase convention.

Quoting Mechanisms:
� Double Quotes (""):

Variables and special characters within double quotes are interpreted and
expanded by Bash.

For example, echo "Hello $USER" would output Hello followed by the current
username.

 Double quotes allow for variable interpolation.

� Single Quotes (''):

Text within single quotes is treated literally, without any interpretation or
expansion by Bash.

For example, echo 'Hello $USER' would output Hello $USER as is, without
expanding $USER .

 Single quotes prevent variable interpolation.

ashref@kali:~$ echo "Hello $USER"

Hello ashref

ashref@kali:~$ echo 'Hello $USER'

Hello $USER

N.B. To force printing a special character, use the back slash “ \ .ˮ

echo “It is \$10ˮ It is $10

Linux Course 54

Arithmetic Operations in Bash
Example Script:

#!/bin/bash

Define variables

a=5

let b=3 #let is similar to the (()) , the variable will be

an int by default

let c=((5+3))

Perform arithmetic operations

let c = $a + $b # Addition (via another variable)

difference=$((a - b)) # Subtraction (using arithmetic expans

ion)

product=$((a * b)) # Multiplication

quotient=$((a / b)) # Division

remainder=$((a % b)) # Modulus

increase=$((a++)) # Or a=a+1

decrease=$((a--)) # Or a=a-1

Print the results

echo "Sum: $sum"

echo "Difference: $difference"

echo "Product: $product"

echo "Quotient: $quotient"

echo "Remainder: $remainder"

Explanation:

(()) is used to perform arithmetic operations in Bash.

Inside (()) , variables do not need to be prefixed with $.

To assign to a variable, put the dollar sign before the parenthesis !

The results are assigned to variables and can be printed using echo .

Run the Script:

� Save the script to a file (e.g., ao.sh).

� Make the script executable: chmod u+x ao.sh .

� Run the script: ./ao.sh .

Linux Course 55

Input and Output in Bash Scripts

Command Line Arguments:

In a Bash script or functions, command line arguments are accessed using positional
parameters. Here's how it works:

$0 Represents the name of the script or program being executed.

$1 , $2 , ... Represent the positional parameters, where $1 is the first argument,
$2 is the second argument, and so on.

Other functions :

$* Represents all command line arguments as a single string, separated by the
first character of the IFS Internal Field Separator) variable. By default, this
character is a space.

$@ Represents all command line arguments as separate strings, preserving their
original whitespace and quoting.

$# Represents the number of command line arguments passed to the script or
function.

$$ Represents the process ID PID of the current script or program.

$! Represents the process ID PID of the last background command executed.

Here's how you can access and use them in a script:

#!/bin/bash

Accessing command line arguments

echo "Script name: $0"

echo "First argument: $1"

echo "Second argument: $2"

echo "All arguments (as a single string): $*"

echo "All arguments (as separate strings): $@"

echo "Number of arguments: $#"

echo "Process ID of the current script: $$"

echo "Process ID of the last background command: $!"

 In the above script, if you run ./script.sh 7 ENSIA , it will output:

Script name: /script.sh

First argument: 7

Second argument: ENSIA

All arguments (as a single string): 7 ENSIA

All arguments (as separate strings): 7 ENSIA

Linux Course 56

Number of arguments: 2

Process ID of the current script: [Process ID]

Process ID of the last background command: [Empty or Previous Proce

Read Command:
Has many useful options :

-p prompt Displays the specified prompt before reading input.

-s Silent mode; input is not echoed to the terminal.

-n count Reads only count characters before stopping.

-r Prevents backslashes from being interpreted as escape characters.

-a array Reads input into an array variable, splitting words based on the value of
the IFS Internal Field Separator) variable.

-d delimiter Specifies a delimiter character to terminate input.

-t timeout Specifies a timeout in seconds. If no input is received within the
specified time, the read command exits with a non-zero status.

Test Command:
Also known as []

Always return either True(0) or False(1) . Similar to the exit() context).

Usage:

test EXPRESSION

test EXPRESSION -a EXPRESSION (logical AND

test EXPRESSION -o EXPRESSION (logical OR

test !EXPRESSION (logical NOT

Example

#!/bin/bash

Check if the current user is root

if test "$(whoami)" = "root"; then

 echo "You are the root user."

else

 echo "You are not the root user."

fi

Linux Course 57

Or Literally Simiraly :

#!/bin/bash

Check if the current user is root

if ["$(whoami)" = "root"]; then

 echo "You are the root user."

else

 echo "You are not the root user."

fi

Ternary-Like Condition

&& Executes the command on its right only if the command on its left succeeds.

|| Executes the command on its right only if the command on its left fails.

Example : test $A = “Hello” && echo true || echo false

using the test command or within if statements, you can check
equality using either = or == . Both are correct.

test -testing integers:
-eq Tests if two integers are equal.

-ne Tests if two integers are not equal.

-lt Tests if the first integer is less than the second integer.

-le Tests if the first integer is less than or equal to the second integer.

-gt Tests if the first integer is greater than the second integer.

-ge Tests if the first integer is greater than or equal to the second integer.

#!/bin/bash

Example: Testing if one integer is greater than another

num1=10

num2=5

if ["$num1" -gt "$num2"]; then

 echo "$num1 is greater than $num2"

elif [$num -eq $num2]; then

echo "Equal"

else

 echo "$num1 is not greater than $num2"

Linux Course 58

fi

Example: Ternary-like behavior

num=10

Ternary equivalent: echo "Number is greater than 5" if num > 5

else echo "Number is not greater than 5"

[$num -gt 5] && echo "Greater than 5" || echo "Smaller than 5"

test -testing file types:
-f Tests if a file exists and is a regular file.

-d Tests if a file exists and is a directory.

-e Tests if a file exists.

-s Tests if a file exists and is not empty.

-r Tests if a file exists and is readable.

-w Tests if a file exists and is writable.

-x Tests if a file exists and is executable.

#!/bin/bash

Example: Testing file types

file="myfile.jpg"

if [-f "$file"]; then

 echo "$file exists and is a regular file."

fi

if [-d "$file"]; then

 echo "$file exists and is a directory."

fi

Switch Case:

#!/bin/bash

Function to validate email address using regex

validate_email() {

 email=$1

Linux Course 59

 if [[$email =~ ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$]

 echo "Valid email address: $email"

 else

 echo "Invalid email address: $email"

 fi

}

Function to validate phone number using regex

validate_phone() {

 phone=$1

 if [[$phone =~ ^\+213[0-9]{9}$]]; then

 echo "Valid phone number: $phone"

 else

 echo "Invalid phone number: $phone"

 fi

}

Display menu options

echo "Welcome to the Data Validation Program:"

echo "1. Validate Email Address"

echo "2. Validate Phone Number"

echo "3. Exit"

Prompt user for input

read -p "Enter your choice: " choice

Process user input using case statement

case $choice in

 1)

 read -p "Enter email address: " email

 validate_email "$email"

 ;;

 2)

 read -p "Enter phone number (format: +213xxxxxxxxx): " phon

 validate_phone "$phone"

 ;;

 3)

 echo "Exiting the program. Goodbye!"

 exit 0

 ;;

 *)

 echo "Invalid choice. Please enter a number from 1 to 3."

Linux Course 60

 ;;

esac

Loops:

1. For Loop:

for item in [LIST]; do

 # Commands to execute for each iteration

done

Or Usual One :

#!/bin/bash

Iterate over numbers from 1 to 5

for ((i = 1; i <= 5; i++)); do

 echo "Iteration $i"

done

Example:

#!/bin/bash

Iterate over a list of numbers

for num in 1 2 3 4 5; do

 echo "Number: $num"

done

Example 2 *

#!/bin/bash

Print a message indicating the start of the loop

echo "Looping through files and directories in the current director

Iterate over each file (or directory) in the current directory

for f in *; do

This line starts a loop where f iterates over each item (file or

directory) in the current directory (* is a wildcard that matches

all files and directories).

 if [-f "$f"]; then

 # a file?, print its name with a message that it's a file

Linux Course 61

 echo "Found file: $f"

 # Check if the current item is a directory

 elif [-d "$f"]; then

 # a dir?, print its name with a message that it's a directo

 echo "Found directory: $f"

 else

 # Neither a file nor a directory?, print a generic message

 echo "Found unknown item: $f"

 fi

done

echo "Loop finished."

Example 3 $*)

#!/bin/bash

Function to print each command-line argument separately

print_args() {

 echo "Printing each argument separately:"

 for n in $*; do

 echo "$n"

 done

}

Call the function with command-line arguments

print_args arg1 arg2 "arg3 with spaces" arg4

Output; Printing each argument separately:

arg1

arg2

arg3

with

spaces

arg4

N.B

$n This syntax simply represents the value of the variable n . If n contains
spaces or special characters, they will be treated as word separators by the shell.

"$n" When you enclose a variable in double quotes, like "$n" , it preserves the
original whitespace and special characters in the value of the variable. It ensures

Linux Course 62

that the variable is treated as a single entity (i.e., a single argument), rather than
being split into multiple words by the shell.

2. While Loop:

while [CONDITION]; do

 # Commands to execute while CONDITION is true

done

Example:

#!/bin/bash

Print numbers from 1 to 5 using a while loop

num=1

while [$num -le 5]; do

 echo "Number: $num"

 ((num++))

done

Example 2 Reading from a file)

#!/bin/bash

Define the file to read

file="example.txt"

Check if the file exists

if [! -f "$file"]; then

 echo "File $file does not exist."

 exit 1

fi

Display a message indicating the start of reading

echo "Reading lines from $file:"

Read each line from the file using a while loop

while IFS= read -r line; do

 echo "$line"

done < "$file"

Display a message indicating the end of reading

echo "Finished reading lines from $file."

Linux Course 63

3. Until Loop:

until [CONDITION]; do

 # Commands to execute until CONDITION is true

done

Example:

#!/bin/bash

Print numbers from 1 to 5 using an until loop

num=1

until [$num -gt 5]; do

 echo "Number: $num"

 ((num++))

done

Continue and Linux:

#!/bin/bash

Example using both break and continue

for ((i = 1; i <= 5; i++)); do

 if [$i -eq 3]; then

 continue # Skip iteration when i equals 3

 fi

 if [$i -eq 4]; then

 break # Exit the loop when i equals 4

 fi

 echo "Iteration $i"

done

echo "Loop finished"

#Output :

Iteration 1

Iteration 2

Functions:

Defining a Function:

Linux Course 64

function_name() {

 # Commands to be executed by the function

}

A comment is required for each new function defined.

Example:

#!/bin/bash

Define a function named greet

greet() {

 echo "Hello, world!"

}

Call the greet function

greet

Function with Parameters:

function_name () {

 local parameter1="$1" # Access the first parameter

 local parameter2="$2" # Access the second parameter

 # Commands

}

Variable Scope :

In Bash all variable by default are defined as global variable, even if it was
declared inside a function.

To avoid that; use the local keyword

Example:

#!/bin/bash

Define a function named greet_with_name that accepts a paramet

er

function greet_with_name {

 local name="$1"

 echo "Hello, $name!"

}

Linux Course 65

Call the greet_with_name function with an argument

greet_with_name "ENSIA"

Returning Values from Functions:

function_name() {

 # Commands

 return value

}

� Accessing the Return Value:

After calling a function, you can access its return value using the special
variable $? .

$? holds the exit status of the last executed command or function.

If the function executes successfully and returns a value, $? will hold that
value.

Example:

#!/bin/bash

Define a function named add that returns the sum of two number

s

add() {

 local num1="$1"

 local num2="$2"

 local sum=$((num1 + num2))

 return $sum

}

Call the add function and store the result in a variable

add 5 3

result=$? # After calling add(), $? holds the return value

echo "The sum is: $result"

Working With Files (From LAB5):

Task 1: Count Lines and Words in a File

Linux Course 66

#!/bin/bash

Check if a filename is provided as an argument

if [$# -ne 1]; then

 echo "Usage: $0 <filename>"

 exit 1

fi

filename=$1

Check if the file exists

if [! -f "$filename"]; then

 echo "Error: File '$filename' not found."

 exit 1

fi

Count the number of lines and words in the file

lines=$(wc -l < "$filename")

words=$(wc -w < "$filename")

Print the counts

echo "Number of lines: $lines"

echo "Number of words: $words"

Task 2: Guess a Word

#!/bin/bash

Loop until the word "end" is entered

while true; do

 # Prompt the user to enter a word

 read -p "Enter a word (type 'end' to finish): " word

 # Check if the word is "end"

 if ["$word" == "end"]; then # Since word is a string;

 # its better to use "$word" isntead of $word, to keep an

y

 # whitespace or special characters within it

 echo "Exiting..."

 break

 fi

Linux Course 67

 # Otherwise, continue reading words

done

Task 3: Print Usernames

#!/bin/bash

Print usernames of users on the machine

echo "Usernames on the machine:"

cut -d: -f1 /etc/passwd

Lecture 11

Bash Shell Scripting (Part 2)

Advanced Conditional Expressions in Bash with [[...]]

Introduction to [[...]]
The test command in Bash is commonly used for evaluating conditional
expressions.

[[...]] offers a more robust and feature-rich solution for writing conditional
expressions.

Enhanced String Comparison
With [[...]] , string comparison becomes more flexible.

Use == and != for pattern matching in string comparison.

Example:

[[$FILE == *.p]] && cp "$FILE" scripts/

Explanation: If the file name matches the pattern ".p", copy it to the
"scripts/" directory.

Logical AND and OR Operations
Inside [[...]] , you can use && and || for logical AND and OR operations.

This allows for more concise and readable conditional expressions.

Regex Matching with =~ Operator
[[...]] supports regex matching using the =~ operator.

Linux Course 68

Some examples used for Checking:

Example 1

[[$a =~ ^[0-9]*$]] # If the variable $a contains 0 or more di

Example 2

[[$a =~ ^[0-9]$]] # If the variable $a is a single digit.

Example 3

[[$a =~ ^[0-9]+$]] # If the variable $a contains only digits.

More Examples:
� Check if a String Contains Only Digits:

string="2024"

if [[$string =~ ^[0-9]+$]]; then

 echo "The string contains only digits."

else

 echo "The string does not contain only digits."

fi

^ denotes the start of the string, [0-9]+ matches one or more digits, and
$ denotes the end of the string.

� Check if a String Starts with a Capital Letter:

string="ENSIA"

if [[$string =~ ^[A-Z]]]; then

 echo "The string starts with a capital letter."

else

 echo "The string does not start with a capital lette

r."

fi

Explanation: This checks if the variable string starts with a capital letter
AZ.

� Check if a String Contains a Specific Word:

string="Hey from ENSIA Linux Lecture"

if [[$string =~ \bLinux\b]]; then

Linux Course 69

 echo "The string contains the word 'Linux'."

else

 echo "The string does not contain the word 'Linux'."

fi

Explanation: This checks if the variable string contains the word "Linux".

\b denotes a word boundary to ensure that "Linux" is a separate word and
not part of another word.

For example, it would match "Linux" in "Linux is here" but would not
match "Linux" in "Linuxsomething”

Lecture 12
AWK Command

Overview:

A Powerful text-processing language and command in Unix systems.

First developed by Bell Labs in 1977.

Main authors: Alfred Aho, Peter Weinberger, and Brian Kernighan.

Allows access to the AWK programming language, designed to process data
within text streams.

AWK is actually a programming language.

awk 'BEGIN { print “Hello World!” }'

Generally used to filter content from files.

Syntax: awk 'BEGIN { FS=" : " } { print $0 } END { print NR }' /etc/passwd

This code has 3 parts (up to 5 parts are possible):

� BEGIN { FS = " : " } Begin Block; optional, executed only once, before any
input line is processed. Used to set up environment variables, initialize
counters, or set the field separator.

Specified either like { FS = ":" } in the begin block, or as an option -
F":" .

� { print $0 } Code Block; a series of commands to be executed for each
line.

� END { print NR } End Block; optional, executed only once, after all lines
have been processed. Used for any final calculations or cleanup (display
summary data/results of processing).

� /etc/passwd Input file.

Linux Course 70

Key Variables:

NR Number of lines that have been processed.

$0 The whole line.

$1 The first field.

$2 : second field, and so on …

Example:

awk 'END { print NR }' /etc/passwd

Prints the number of lines, similar to wc -l /etc/passwd .

Working on Selected Lines Only
Only first 8 lines:

awk 'NR < 9 { print NR, $1 }' /etc/passwd

Process from line 5 to 11

awk 'NR >= 5 && NR <= 11 { print $0 }' /etc/passwd

Process lines that end with the word "bash":

awk '/bash$/ { print $0 }' /etc/passwd

Print 1st, 3rd, and 7th fields (based on FS

awk 'BEGIN { FS = ":" } { print $1, $3, $7 }' /etc/passwd

Improved print command using printf from C-language:

awk 'BEGIN { FS = ":" } { printf "%10s %4d %17s\n", $1, $3,

$7 }' /etc/passwd

Process lines up to line 15 that do not start with '#':

awk 'BEGIN { FS = ":" } !/^#/ && NR <= 15 { print $1, $3, $7

}' /etc/passwd

Print IDs greater than 400

Linux Course 71

awk -F":" '$3 > 400 { print $3 }' /etc/passwd

Built-In Functions (Exactly those seen in C++ DSA1)
String Functions Handling and manipulating strings.

Numeric Functions Performing calculations and numeric operations.

User-Defined Functions
Example:

awk '

function my_function(param1, param2) {

 # Function body

}

BEGIN {

 # Initialization code

 my_function(value1, value2)

}

'

Save the AWK script to a file (script.awk):

awk -f script.awk

Commands:
� Navigation and Directory Management:

pwd Prints the current working directory.

cd Changes the current directory.

ls Lists directory contents.

clear Clears the terminal screen.

mkdir Creates a new directory.

mkdir -m xyz name : to specify the permissions.

xyz are the permissions in Absolute Mode (e.g. 755

rmdir Removes a directory (if empty).

df Displays disk space usage of filesystems.

Linux Course 72

ln : create a hard link.

ln -s : create a symbolic link.

diff : compare between the contents of two files line by line.

� Files and Directories Operations:

touch Creates an empty file or updates the access and modification times of a
file.

cp Copies files or directories.

mv Moves or renames files or directories.

rm Removes (deletes) files or directories.

head Outputs the first part of files. 10 if not specified { -n x }).

tail Outputs the last part of files. 10 if not specified { -n x }).

chmod Changes file permissions.

chown Changes file owner and group.

chgrp Changes group ownership of files.

sfdisk To display the partition table of a disk:

debugfs To interactively debug an ext4 filesystem:

badblocks To scan a device for bad blocks:

dosfsck To check and repair a FAT filesystem:

mkdosfs To create a FAT filesystem on a partition:

fdisk To partition a disk interactively.

fdisk -l : display current disk structure.

fsck To check and repair a filesystem:

mkfs To create an ext4 filesystem on a partition:

parted To create a new partition on a disk:

mount To mount a filesystem. (attach the filesystem found on a device to the
system's file hierarchy)

Example: mount /dev/sdb1 /mnt

This command mounts the filesystem from the device /dev/sdb1 to the
directory /mnt

mount [options] <device> <mount_point> :

The <device> argument can refer to various types of storage devices.

Linux Course 73

The <mount_point> argument specifies the directory in the existing
filesystem where the contents of the device will be made available.

Options:

-t <type> Specifies the filesystem type. If not specified, the type is
determined automatically.

-o <options> Allows specifying mount options like read-only (ro),
read-write (rw), or specific permissions.

-n Mounts the filesystem without updating /etc/mtab or
/proc/mounts . Useful for temporary mounts.

-r Mounts the filesystem read-only.

-o remount Remounts a mounted filesystem with different options.

-o bind Remounts a subtree somewhere else without moving the
subtree's data.

unmount : used to detach a mounted filesystem from the filesystem hierarchy,
allowing you to safely remove storage devices or unmount network shares.

sudo unmount /mountingpoint

df -h : Displays information about mounted filesystems and their disk usage

quota View quota limits and usage for the current user.

quotacheck Checks and updates disk usage and quota information for
filesystems.

sudo quotacheck -avug /path(of file system)

sudo edquota -u username Set user quotas interactively)

sudo edquota -g groupname : Set group quotas interactively)

Edit /etc/quotatab to define default quotas for new users/groups.

quota -u username View quota information for a specific user)

quota -g groupname View quota information for a specific group)

repquota /mountpoint(path(of filesystem)) Report quota usage and limits for all
users on a file system)

sudo quotaon /path : Enables quotas on specified file systems.

sudo quotaoff /path : Disables quotas on specified file systems.

quotacheck : Checks and repairs quota inconsistencies on filesystems.

� User and Group Management:

Linux Course 74

id Displays the user and group IDs of the current user.

usermod Modifies user account attributes.

finger Displays user information, including login name, real name, shell, etc.

chfn Changes the user's full name information.

chsh Changes the user's login shell.

useradd Creates a new user account.

groupadd Creates a new group.

whoami Prints the current user's username.

userdel Deletes a user account.

adduser : Interactive command to add a user.

deluser Deletes a user account.

� System Information:

hostname Prints or sets the system's hostname.

date Prints or sets the system date and time.

cal Displays a calendar.

who Displays information about users who are currently logged in.

last Shows listing of last logged in users.

lastb Shows listing of last logged in bad users.

users Lists users currently logged in.

lslogins Displays information about known users in the system.

whereis : possible locations of file.

route : display infos about network of the machine.

uptime : time since the machine is up.

w : which users are online.

� Processes:

ps Displays information about active processes.

ps aux : Display information about all processes

ps -u user Display process information for a specific user:

ps axjf Display process information in a tree format

top Provides dynamic real-time information about running processes and
system resource usage.

Linux Course 75

top then Shift + P Display processes sorted by CPU usage (similarly,
can filter any output)

� Package Management:

synaptic A graphical package management tool used in some Linux
distributions to manage software packages.

apt Advanced Package Tool, used for package management on Debian-
based systems.

� Text Editing:

vi A text editor with powerful editing capabilities.

nano A simple text editor commonly used in terminal environments.

� File Compression/Manip:

gzip Compresses files using the gzip compression algorithm.

gunzip Decompresses gzip-compressed files.

zcat Decompresses and displays compressed files.

tar Manipulates archives in the tar format.

tar cf *.tar : create a tar file.

tar -xvf filename : extract content from a file.

wget Downloads files from the internet

� Command Line Utilities:

echo Prints text to the terminal.

; Separates multiple commands on a single line.

&& Executes the next command only if the previous command succeeds.

> Redirects command output to a file, overwriting the file's contents.

>> Appends output to a file.

< Redirects input from a file to a command.

wc Counts lines, words, and characters in a file or input stream.

grep Searches for patterns in files or input streams.

less A paginator for viewing text files, allowing scrolling and searching.

cat Concatenates and displays files' content.

apropos Searches the manual page names and descriptions for a specified
keyword.

unalias Removes aliases previously set with the 'alias' command.

Linux Course 76

sort Sorts lines of text files.

sort -u : stands for unique; ensures only unique lines are retained in the
output.

cut Extracts sections from each line of files.

type Indicates how a command name is interpreted, and its type.

whatis Displays one-line manual page descriptions.

info Provides detailed information about commands and concepts.

tee : to read an input.

� Environment and Shell:

export Sets environment variables for child processes.

alias Creates shortcuts for commands or command sequences.

help Provides help for shell built-in commands.

exit Terminates the current shell session.

$PATH : Directories where shell searches for executable files.

to modify : export PATH=…

� Regular Expressions:

Or (regex); Powerful tools for pattern matching and
manipulation of text data. In Linux, regular expressions are
widely used in various contexts such as searching, replacing,
and filtering text within files or as part of command-line utilities
like grep , sed , awk , and also witihn Bash Itself using [[]]
conditional expressions.

Metacharacters: a character that has special meaning.

. Matches any single character (except newline).

* Matches 0 or more occurrences of the preceding character or group.

+ Matches 1 or more occurrences of the preceding character or group.

? Matches one occurrence of the preceding character or group.

^ Anchors the regex to the start of the line.

$ Anchors the regex to the end of the line.

[] Matches any single character within the brackets.

Linux Course 77

[abc] matches any single character that is either 'a', 'b', or 'c'.

[^abc] Complementary of previous; Matches any character excpet
‘aʼ , ʼbʼ or ‘c .̓ Different than ^[abc] !

[0-9] matches any single digit from 0 to 9.

[a-zA-Z] matches any single alphabet character, either lowercase or
uppercase.

{ } Specifies the number of occurrences of the preceding character or
group.

| Alternation, matches either the expression before or after it.

\ Escapes a metacharacter to be treated as a literal character.

Groups and Ranges :

(abc) Matches the exact sequence “abc ;ˮ treats multiple characters as a
single unit.

a{2,4} Matches “aˮ repeated 2 to 4 times.

Example : Using grep to Find IP Addresses

grep -Eo '\b([0-9]{1,3}\.){3}[0-9]{1,3}\b' log.txt

Example:

ls ???[lnx]* : print all the words with 4th char being l, n or x.

the pattern “^ens.a$” matches all the words starting with ens ending with a
and 4th character being any single character.

grep -E ‘^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+ \ .[a-zA-Z]{2,}$’ file.txt : search for
valid email adresses.

� Sed Command:

sed , short for stream editor, is a powerful command-line tool used for text
processing and manipulation. It reads text from a file or standard input,
performs operations (such as search, replace, insert, delete), and prints the
results to standard output. sed operates by applying commands to each line of
input or to a range of lines specified by addresses

Usage:
sed [options] [commands] [input-file...]

Examples:

� Substitution:

Linux Course 78

sed 's/old_text/new_text/g' filename.txt

This command replaces all occurrences of "old_text" with "new_text" in
the file "filename.txt".

� Delete lines:

sed '/pattern/d' filename.txt

This command deletes all lines containing the specified pattern from the
file "filename.txt".

� Insert text before a line:

sed '/pattern/i\new_line' filename.txt

This command inserts "new_line" before each line containing the specified
pattern in "filename.txt".

� Displaying Specific Lines:

sed -n '5,10p' filename.txt

� Appending Text After Specific Lines:

sed '5a\new_line' filename.txt

� Specifying Line Ranges:

sed '10,20d' filename.txt

This command deletes lines 10 through 20 from the file "filename.txt"

� Print Last Line:

sed -n '$p' filename.txt

� Mixing it with regular Expressions:

a� Print lines of f1.txt that start with "Ash":

sed -n '/^Ash/p' f1.txt

b� Print lines of f1.txt that end with "AI":

Linux Course 79

sed -n '/AI$/p' f1.txt

c� Add the string "Line: " at the beginning of each line in f1.txt:

sed 's/^/Line: /' f1.txt

d� Put the word "courage" between double quotes:

sed 's/courage/"&"/g' f1.txt

e� Add a comma at the end of each line:

sed 's/$/,/' filename.txt

f� Convert tabs to spaces:

sed 's/\t/ /g' filename.txt

g� Delete empty lines:

sed '/^$/d' filename.txt

This command deletes lines that are empty (contain only whitespace
characters).

Options:

-e <script> Add the script to the commands to be executed.

-n Suppress automatic printing of pattern space.

-i Edit files in place.

-r or -E Use extended regular expressions.

-f <script-file> Add the contents of the script-file to the commands to be
executed.

And with that, The Introduction to Linux course comes to an end.
Keep on coding, keep on exploring, And rebi ywefe9 ✨.

Berbaoui Ashref

